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Abstract
Deep learning (DL) jobs use multi-dimensional parallelism,
i.e., combining data, model, and pipeline parallelism, to use
large GPU clusters efficiently. Long-running jobs may expe-
rience changes to their GPU allocation: (i) resource elasticity
during training adds or removes GPUs; (ii) hardware main-
tenance may require redeployment on different GPUs; and
(iii) GPU failures force jobs to run with fewer devices. Cur-
rent DL frameworks tie jobs to a set of GPUs and thus lack
support for these scenarios. In particular, they cannot change
the multi-dimensional parallelism of an already-running job
in an efficient and model-independent way.

We describe Tenplex, a state management library for DL
systems that enables jobs to change their parallelism dy-
namically after the GPU allocation is updated at runtime.
Tenplex achieves this through a new abstraction, a par-
allelizable tensor collection (PTC), that externalizes the job
state during training. After a GPU change, Tenplex uses
the PTC to transform the job state: the PTC repartitions the
dataset state under data parallelism and exposes it to GPU
workers through a virtual file system; and the PTC obtains
the model state as partitioned checkpoints and transforms
them to reflect the new parallelization configuration. For
efficiency, Tenplex executes PTC transformations in parallel
with minimum data movement between GPU workers. Our
experiments show that Tenplex enables DL jobs to support
dynamic parallelization with low overhead.
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1 Introduction
Deep learning (DL) has led to remarkable progress in many
domains, including conversational AI [51], natural language
processing [8, 13, 25], computer vision [26, 73], and recom-
mender systems [22, 70, 87]. These advances, however, are
due to the ever-increasing sizes of deep neural network (DNN)
models and training datasets: e.g., OpenAI’s GPT-3 language
model has 175 billion parameters, requiring around 700 GB
of memory for the model with 32 bit floating-point num-
bers [8]. Large DNN models, therefore, are trained in a dis-
tributed fashion with parallel hardware accelerators, such
as GPUs [60], NPUs [15], or TPUs [35].
Many organizations have invested in DL clusters with

thousands of GPUs [32], and DL jobs are deployed on GPUs
using multi-dimensional parallelism [2, 62, 84]. It combines
data [36], pipeline [29, 48], and tensor parallelism [10], and
these strategies are implemented either by model-specific li-
braries, (Megatron-LM [68], DeepSpeed [63]), or deployment-
time parallelizers (Alpa [86], Unity [74]).
Due to their high cost [27], organizations must manage

GPU clusters efficiently. Users submit training jobs with
multi-dimensional parallelism to a DL job scheduler [38, 69],
which allocates it to GPUs. An emerging requirement is that,
due to the long-running nature of DL jobs, the original GPU
allocation of a job may change over time [69] for several
reasons: (i) elasticity—to maintain high cluster utilization,
DL jobs want to claim extra GPU resources when they be-
come available [54]; (ii) redeployment—DL jobs may have
to release specific GPUs and migrate to others to reduce frag-
mentation [79], support hardware maintenance, or handle
preemption by higher priority jobs [55]; and (iii) failure
recovery—DL jobs may lose GPUs at runtime due to failures
andmust continue trainingwith fewer GPUs after recovering
from checkpoints [77].
We observe that current DL systems (PyTorch [54], Ten-

sorFlow [1], MindSpore [45]) do not allow DL job schedulers
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to change GPU resources at runtime. They lack a property
that we term device-independence: DL jobs are tightly cou-
pled to GPUs at deployment time, preventing schedulers
from changing the allocation. As we show in §2.3, changing
the GPU allocation of a job with multi-dimensional paral-
lelism also means that its current parallelization strategy
may no longer be optimal, thus requiring the replanning of
its parallelization approach.

Both industry [69] and academia [43] have recognized the
need for changing DL job resources dynamically, resulting
in three types of solutions: (a) model parallelizers, e.g.,
Megatron-LM [68] and DeepSpeed [63], can be extended
with support to change GPU allocation during training. Such
approaches, however, are limited to supported DNN archi-
tectures, such as specific transformer models [68]; (b) elastic
DL systems, e.g., Torch Elastic [57], Elastic Horovod [28],
and KungFu [43] can adapt the number of model replicas
on GPUs at runtime. By only adapting model replicas, such
solutions are limited to data-parallel DL jobs only and do not
support generic multi-dimensional parallelism; and (c) vir-
tual devices, used by e.g., VirtualFlow [52], EasyScale [40],
and Singularity [69], decouple DL jobs from physical devices:
jobs assume a maximum number of virtual GPUs, which are
then mapped to fewer physical GPUs at runtime. While this
is transparent to job execution, it requires complex virtual-
ization at the GPU driver level [69] and does not support
changes with multi-dimensional parallelization [40].
In this paper, we explore a different point in the design

space for supporting dynamic resource changes in DL clus-
ters. Our idea is to create a state management library
for DL systems that (i) externalizes the training state from
a DL job (i.e., the model and dataset partitions); and then
(ii) transforms the state in response to dynamic GPU changes.

To design such a library, we answer several questions:
(1) what is a suitable abstraction for representing the DL job
state, so that it can be transformed when adapting multi-
dimensional parallelism after a GPU change? (2) how can
a state management library retrieve the job state from the
DL system with little change to its implementation? (3) how
can the library deploy changes to the multi-dimensional
parallelism of large DL jobs with low overhead?
We describe Tenplex,1 a state management library for

DL systems that enables jobs with multi-dimensional paral-
lelism to support dynamic changes to GPUs during training.
Tenplex makes the following new technical contributions:
(1) Externalizing DL job state. Tenplex extracts the DL
job state from the DL system and represents it using a tensor-
based abstraction, which we call a parallelizable tensor col-
lection (PTC). A PTC is a hierarchical partitioned collection
of tensors that contains the (i) dataset state of the job, ex-
pressed as a set of training data partitions, and (ii) the model
state, expressed as partitioned checkpoints of the DNNmodel

1
https://github.com/kungfu-team/tenplex

parameters. The PTC partitioning depends on the multi-
dimensional parallelization of the job, i.e., how the job uses
data, pipeline, and tensor parallelism.
Tenplex must expose the DL job state to a PTC and sup-

port efficient access by the DL system. Tenplex stores a
PTC in a hierarchical virtual file system (implemented using
Linux’ FUSE interface [75]), which is maintained in memory
for efficient access: (1) for the dataset state, Tenplex loads
the training data into the workers’ host memory. To support
data parallelism (DP), each data partition has a virtual direc-
tory. It contains the files with the training data samples that
the worker must process; (2) for the model state, Tenplex
retrieves the partitioned model checkpoints created by the
DL system, and the PTC stores them as a hierarchy of vir-
tual files. The hierarchy mirrors the layered structure of the
partitioned model tensors, simplifying state transformations
when the multi-dimensional parallelization changes.
(2) Transforming DL job state. When the DL job sched-
uler alters the GPU allocation, Tenplex transforms the state
maintained as a PTC to change the multi-dimensional par-
allelization configuration. After a GPU change, Tenplex re-
quests a new parallelization configuration from a parallelizer
(e.g., Megatron-LM [68] or Alpa [86]). It then applies state
transformations to the PTC that updates the partitioning of
the tensors that represent the dataset and model states.
The state transformations ensure that the PTC remains

consistent, i.e., the convergence of the DL job is unaffected.
For the dataset state, Tenplex repartitions the training data
andmakes the new data partitions available to workers while
keeping the data access order of samples unaffected across it-
erations; for the model state, Tenplex repartitions the model
layers and associated tensors and creates new partitioned
model checkpoints. The partitioned checkpoints are then
loaded by the new set of GPU devices.
(3) Optimizing DL job state changes. The reconfiguration
of the DL job state must be done efficiently, e.g., reducing
data transfers to disseminate the new state to workers. Ten-
plex therefore parallelizes the PTC transformations across
all workers, and it sends the minimum amount of data to
establish correctly partitioned state on all workers. Workers
fetch sub-tensors from each other to avoid unnecessary data
movement. Tenplex also overlaps the sending of dataset
partitions with model training, which permits the DL system
to resume training before the entire partitions are received.
We implement Tenplex as a Go library with 6,700 lines of
code. It integrates with existing DL libraries, such as Py-
Torch [54], and systems, such as Megatron-LM [68] and
DeepSpeed [63]. Our evaluation shows that Tenplex can
dynamically change a DL job’s GPU resources with any par-
allelization configuration with good performance: it reduces
training time by 24% compared to approaches that only scale
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Fig. 1. Training deep learning (DL) jobs with multi-

dimensional parallelism on a shared GPU cluster

along the data parallelism dimension; resource reconfigura-
tion takes 43% less time than approaches that migrate all GPU
state and 75% less compared to maintaining state centrally.

2 Resources Changes in DL Training
Next, we describe DL jobs with multi-dimensional paral-
lelism (§2.1). We then motivate resource changes during
training (§2.2) and discuss associated challenges (§2.3). We
finish with a survey of current approaches for adapting re-
sources during training and their limitations (§2.4).

2.1 Deep learning jobs with parallelism
TrainingDNNmodels, e.g., large languagemodels (LLMs) [59],
is resource-intensive and must scale to clusters with many
accelerators, such as GPUs [60], NPUs [15], or TPUs [35]. A
single DL job may be executed on 1,000s of GPUs [71] by
distributing it across workers, each with multiple GPUs.

Fig. 1 shows a typical deployment for DL jobs in a GPU
cluster. A DL job scheduler (e.g., Pollux [58], Gandiva [81])
manages the GPUs and assigns jobs to them. When running
a job, a model parallelizer (e.g., Alpa [86], DeepSpeed [63],
Megatron-LM [68]) decides on a parallelization configura-
tion for the job by considering multiple dimensions: (1) data
parallelism [36] partitions training data across workers and
replicates the DNN model. Workers compute model updates
using their local data partitions and synchronize these up-
dates after each training iteration; (2) tensor parallelism [10]
splits the model, i.e., the operators and parameters in the
computational graph [1, 45, 54], and assigns partitions to
workers; and (3) pipeline parallelism [29, 48] partitions the
model into stages [29]. Training data batches are then split
into smaller micro-batches and pipelined across workers.
Recent advances [21, 34, 49, 68] have shown that a com-

bination of parallelism along these dimensions, i.e., multi-
dimensional parallelism, improves the performance of large
DNNmodel training. Different parallelization configurations
have different properties in terms of their scalability, de-
vice utilization, and memory consumption: data parallelism

alone cannot scale to large deployments due to its synchro-
nization overheads and reliance on large batch sizes [66];
pipeline parallelism under-utilize devices due to pipeline
bubbles [48]; and tensor parallelism incurs high communi-
cation overheads but must be used to fit large models that
surpass GPU memory [6]. By combining multiple strategies,
model parallelizers [74, 86] navigate this trade-off space.

After generating a multi-dimensional parallelization plan,
the DNN model training is performed on the GPU cluster
by a DL system (e.g., PyTorch [54], TensorFlow [1], Mind-
Spore [45]). The deployed DL job consists of the dataset state
and model state: the dataset state contains the partitions
with the training data samples, and records the read posi-
tions across these partitions; the model state consists of the
partitioned model and optimizer parameters. The partitioned
state is assigned to the workers (see Fig. 1).

2.2 Need for dynamic resource changes
Since it may take hours, days, or weeks to run a single DL
job, e.g., training a large language model (LLM) [14, 50, 78],
the DL job scheduler may change the GPU allocation of jobs
at runtime. There are several reasons for this:
(1) Elasticity.DL job schedulers may elastically increase and
decrease the allocated GPUs for a job based on the available
resources [38, 82]. When a job completes, an elastic sched-
uler can re-allocate the freed-up GPUs to other jobs, e.g.,
giving each job a fair share of GPUs [9]. Higher priority jobs
submitted to the cluster may need to take GPU resources
away from already-running jobs [53].

In cloud environments [20, 44], elastic schedulers can take
advantage of differences in GPU pricing. When lower cost
“spot” GPUs become available [56], the scheduler may add
them to existing jobs; when spot GPUs are preempted, jobs
must continue executionwith fewer GPUs. Elastic schedulers
thus improve shared cluster utilization, reduce cost, and
decrease completion times [80].
(2) Redeployment. DL job schedulers may reallocate jobs
to a new set of GPUs for operational reasons. For example,
before performing hardware maintenance or upgrades, a job
may have to be shifted to a new set of GPUs at runtime.
The redeployment of jobs can also reduce fragmentation

in the allocated GPUs. If a job uses GPUs spread across
disjoint workers, communication must use lower-bandwidth
networks (e.g., Ethernet or InfiniBand) as opposed to higher-
bandwidth inter-connects between GPUs (e.g., NVLink). A
scheduler may therefore change the GPU allocation of a job
to de-fragment it onto fewer workers [79].
(3) Failure recovery. Long-running jobs may lose GPU
resources due to failures, caused by hardware faults, network
outages, or software errors [14, 50]. After a fault, the job
must continue execution after recovering from the last state
checkpoint [46]. In some cases, the failed worker or GPUs
can be replaced by new resources before resuming the job;
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in other cases, the job can resume with fewer GPUs, which
affects its optimal parallelization configuration.

2.3 Challenges when changing GPU resources
Changing GPUs for a job at runtime adds challenges:
(1) Impact on convergence.When changing the number
of GPUs, the convergence of a job may be affected, and the
final trained model may have e.g., a different accuracy. In
today’s DL systems, job convergence depends on the specific
set of GPUs used, as current jobs are not device-independent.
There are multiple reasons for this:
Consistency of training dataset. A DL job must maintain
dataset consistency during training, i.e., it must process train-
ing data samples exactly once and in a consistent order in
each training epoch. Dataset consistency must also hold
when GPU changes under data parallelism, which affects
the data sharding and requires re-partitioning. For example,
when re-partitioning the dataset within an epoch, the order
in which data samples are ingested from that point onwards
must not change for convergence to be unaffected.

Fig. 2a shows how model convergence, plotted as the loss
value, is affected after adding a GPU (vertical orange line)
under data parallelism. The solid black line shows regular
model convergence with a static GPU allocation; the dashed
red line shows convergence after the scale-out event when
the dataset is processed inconsistently after re-partitioning:
when resuming the training in the middle of the epoch, the
first half of the training data is used twice, which overfits
the model and reduces the loss value unreasonably.
Consistency of hyper-parameters. Hyper-parameter choices,
such as batch sizes, and learning rate [72], depend on the
GPU resources of a job. For example, the local batch size
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is fixed for each GPU and is typically chosen to keep de-
vices fully utilized with data; the global batch size therefore
changes with the number of GPUs.

In Fig. 2b, we show how the global batch size must be kept
constant after adding a GPU (vertical orange line) under data
parallelism. The solid black line shows model convergence
(measured as loss) without the GPU change. The dashed red
line shows the divergence when the GPU allocation changes
but the device batch size remains constant.
(2) Impact on performance. The best parallelization con-
figuration for a DL job, i.e., one achieving the lowest time-
to-accuracy, depends on the GPU resources used by the job.
Parallelization configuration. The best multi-dimensional par-
allelization, in terms of data, tensor, and pipeline parallelism,
depends on many factors, including the number and type of
GPUs, the bandwidth and latency of the GPU inter-connect
and the network between workers, and the size and struc-
ture of the DNN model architecture. Model parallelizers, e.g.,
Alpa [86] and Unity [74], consider these factors based on pro-
filed performance data and/or analytical cost models when
choosing a parallelization configuration.
When the GPU resources of a DL job change at runtime,

a parallelization configuration that was optimal at deploy-
ment time may no longer be optimal with the new GPUs. We
demonstrate this empirically in Fig. 3, which shows the train-
ing throughput (in samples/second) when training BERT [13]
and GPT-3 [8] models using Megatron-LM [68] on 16 GPUs
under a range of parallelization configurations (see §6.1).
Each parallelization configuration varies the degree of tensor,
pipeline, and data parallelism, altering the GPU allocation.
As the results show, the training throughput differs by

over 10× between the best and the worst configuration, de-
spite the fact that each configuration uses the same number
of GPUs (16). The configuration (𝑇, 𝑃, 𝐷) = (2, 4, 2) performs
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Tab. 1: Comparison of proposals for supporting dynamic GPU changes in DL jobs

Approach Systems

Consistency Parallelism Reconfiguration

Dataset Hyper-params

Static Dynamic overhead

DP PP TP DP PP TP

A Model libraries

Alpa [86] - - ✓ ✓ ✓ - - - -

Megatron-LM [68] - - ✓ ✓ ✓ ✓ ✗ ✗ full state

Deepspeed [63] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ full state

B

Elastic

DL systems

Elastic Horovod [28] ✗ ✗ ✓ - - ✓ - - full state

Torch Distributed [57] ✓ ✗ ✓ ✓ (✓) ✓ (✓) (✓) full state

Varuna [4] ✓ ✓ ✓ ✓ - ✓ ✓ - full state

KungFu [43] ✓ ✓ ✓ - - ✓ - - full state

C Virtual devices

VirtualFlow [52] ✓ ✓ ✓ - - ✓ - - full state

EasyScale [40] ✓ ✓ ✓ - - ✓ - - full state

Singularity [69] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ GPU state

State management Tenplex ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ minimal state

✓ indicates support for the feature; (✓) indicates support after a job-specific implementation by the user;
✗ indicates support but without dynamic scaling; and - indicates no support.

well because it uses communication-intensive tensor paral-
lelism only within workers; the configuration (16, 1, 1) per-
forms the worst because tensor parallelism must use slower
inter-worker links.
Reconfiguration cost. After changing parallelization, a job’s
partitioned dataset and model state are no longer correct.
The state must be re-partitioned and the new partitions must
be sent to workers, which may involve large data movement.
For example, prior work [69] reports that reducing the GPU
allocation for a DL job from 16 to 8 GPUs may take 122 secs.

2.4 Current approaches
A number of approaches have been proposed to allow DL job
schedulers to change GPU resources dynamically. We give
an overview, and then discuss specific proposals, assessing
them against the challenges from §2.3.

Fig. 4 shows the main approaches: A dynamic model li-
braries adapt to changes in GPUs by producing a new par-
allelization configuration at runtime; B elastic DL systems
include support to scale GPU resources out and in at runtime;
and C virtual devices decouple physical from logical GPUs,
allowing the mapping to change at runtime.

Tab. 1 compares systems that implement these approaches.
A Model libraries. The Alpa model parallelizer [86] pro-
vides a parallelization configuration at job deployment time
and does not support dynamic changes. Megatron-LM [68]
and DeepSpeed [63] support dynamic resource changes un-
der data parallelism only by dividing batches into mini-
batches [61, 71]. By changing the allocation of mini-batches,
DeepSpeed ensures consistency after resource changes. Since
the full training state is moved to and from remote storage,
there is a high reconfiguration overhead.

In summary, model libraries do not handle dynamic multi-
dimensional parallelism, and they lack integration with DL
systems, requiring manual state re-partitioning.
B Elastic DL systems. Elastic Horovod [65] exposes the
model state through a user-defined state object. It allows

users to synchronize state across workers when changing
data parallelism, but state re-distribution must be imple-
mented manually. In particular, the dataset state can become
inconsistent if scaling does not occur at epoch boundaries.
Torch Distributed Elastic/Checkpoint [42] provides a model
broadcast API to save/resume model checkpoints and allows
users to implement re-partitioning operations. Users must
ensure the consistency of hyper-parameters and perform
the required data movement between workers. Varuna [4]
lets users define cut-points at which the model pipeline is
partitioned at runtime when resources change. KungFu [43]
uses a broadcast operation to distribute the training state
and with it the model replicas.

Overall, elasticity support either does not account for full
multi-dimensional parallelism or requires users to implement
state re-partitioning and distribution manually.
C Virtual devices make DL jobs device-independent by
virtualizing resources and allowing the mapping between
virtual/physical resources to change at runtime. The set of
virtual resources exposed to a job represents the maximum
resources available at runtime. VirtualFlow [52] uses an all-
gather operation to send the current training state to the new
workers. To ensure dataset consistency, it follows exactly
once semantics for data loading. EasyScale [40] uses a thread
abstraction and performs process snapshotting to capture
state. Singularity [69] obtains the full GPU state through
virtualization at the CUDA driver level.

As a consequence, virtual device approaches are effec-
tive at supporting dynamic data parallelism, which does not
require re-partitioning, but they cannot support runtime
changes with multi-dimensional parallelism.

3 Tenplex Design
Tenplex’s goal is to support dynamic GPU changes of DL
jobs while (i) ensuring the consistency of the training re-
sult, (ii) supporting arbitrary reconfiguration of jobs with
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multi-dimensional parallelism, and (iii) maintaining a low
reconfiguration overhead (see Tab. 1).

Tenplex’s design is based on the observation that resource
changes at runtime affect a DL job’s state, but existing DL
systems lack an abstraction to expose the state and transform
it at runtime. Fig. 5 shows the idea behind Tenplex’s design
as a state management library for DL systems. Tenplex exter-
nalises the job state from the DL system (see 1 ) and manages
it as a parallelizable tensor collection (PTC). A PTC provides
a hierarchical tensor representation of the job’s model and
dataset state, and it enables Tenplex to modify the state
across GPU devices after the parallelization configuration is
updated, transparently to the DL system.
The updates to the GPU resources of a job are decided

by a DL scheduler at runtime. The scheduler can increase
or decrease a job’s GPU allocation and notify Tenplex ( 2 ).
Tenplex then invokes its State Transformer ( 3 ), which first
obtains a new parallelization configuration for the job from a
model parallelizer, such as Alpa [86] orMegatron-LM [68] ( 4 ).
Based on the new configuration, the State Transformer cal-
culates a reconfiguration plan. The plan describes how the
state represented by the PTC must change across the GPU
devices to implement the new parallelization configuration.
The reconfiguration plan is then executed by re-partitioning
and re-distributing the data and model state ( 5 ).
We explain how the PTC abstraction allows Tenplex to

manage the state of a DL job with multi-dimensional paral-
lelism in §4, and how Tenplex implements the state changes
required by the reconfiguration plan efficiently in §5.

4 Parallelizable Tensor Collection
Next, we describe the PTC abstraction (§4.1) and how it is
used by Tenplex to compute reconfiguration plans (§4.2).

4.1 PTC overview
A parallelizable tensor collection (PTC) is Tenplex’s abstrac-
tion to represent the parallelized state of a DL job. Such an
abstraction must satisfy several requirements: a PTC must
match how the DL system represents parallelized state so
that Tenplex can obtain and adapt the state correctly (R1); it
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must represent the state of anymulti-dimensional paralleliza-
tion strategies to make Tenplex compatible with current
parallelizers and their parallelization approaches (R2); and
it must facilitate the computation of an efficient reconfigu-
ration plan for transforming the state from the current con-
figuration to a new one, e.g., with minimal data movement
between GPU workers (R3).

Since a PTC must capture the full execution state of a DL
job, it includes (i) the dataset state, which consists of the
training data and an iterator that records the processed data
in the current epoch; and (ii) the model state, which consists
of the DNN model parameters of all layers. A PTC expresses
both types of state in a unified manner as a collection of
tensors, which allows Tenplex to manipulate the tensors
when changing the parallelization configuration.

It is efficient for Tenplex to manage both types of state
using the PTC (R1): the dataset state is maintained directly in
the PTC by Tenplex and exposed to the DL system through
a suitable data access API; and the current model state is
retrieved prior to reconfiguration from distributed model
checkpoints created by the DL system (see §5.2).

The PTC abstraction must be compatible with any multi-
dimensional parallelism strategies (R2). This allows Tenplex
to support an arbitrary parallelizaton configuration that com-
bines data, model, and pipeline parallelism [7, 29, 63], as
provided by model parallelization libraries (e.g., Megatron-
LM [68]) or auto parallelizers (e.g., Alpa [86], Unity [74]).
Tenplex must then capture the impact of the parallelization
strategy on the PTC state. Here, we observe that any multi-
dimensional parallelization strategy can be expressed as a
slicing of state tensors, followed by a partitioning of these
tensors across GPU devices.
PTC exploits this observation to define parallelism with

three mapping functions: (i) a slicing function encodes how
tensors are split into sub-tensors, as dictated by tensor par-
allelism; (ii) a partitioning function then groups these sub-
tensors into collections that can be assigned to devices, cap-
turing data and pipeline parallelism; and (iii) an allocation
function maps these sub-tensor collections to GPU devices
for execution. Despite their simplicity, these three functions
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are sufficient to express any multi-dimensional paralleliza-
tion strategies in a DL job.
We define the PTC as a tensor collection 𝑇 , slicing func-

tion 𝜎 , partitioning function 𝜙 , and allocation function 𝛼 :

PTC = (𝑇, 𝜎, 𝜙, 𝛼) (1)

where𝑇 = 𝐷 ∪𝑀 are the tensors that make up the model𝑀
and dataset 𝐷 , 𝑇 = {𝑡1, . . . , 𝑡𝑛}; 𝜎 slices a tensor 𝑡 into sub-
tensors, 𝜎 (𝑡) = {𝑡1, .., 𝑡𝑚}, 𝑡 ∈ 𝑇 . We denote all sets of
sub-tensors as 𝑈 , i.e., 𝑈 = {𝜎 (𝑡1) . . . 𝜎 (𝑡𝑛)}; 𝜙 partitions
𝑈 into sub-collections 𝑆 , 𝜙 (𝑈 ) = {𝑆1, .., 𝑆𝑝 }; 𝛼 allocates sub-
collections to GPUs of the resource pool 𝑅, 𝛼 (𝑆𝑖 ) = {𝑟1, .., 𝑟𝑞}.

Fig. 6 shows an example of a PTC that describes the state
of a job deployed on 4 GPUs with both model parallelism and
data parallelism of degree 2. Here, the data samples {𝑡1, 𝑡2}
and model parameters {𝑡3, 𝑡4} are tensors. With two-way
tensor parallelism, each model tensor must be split into 2 sub-
tensors: the slicing function 𝜎 slices each tensor in 𝑇 and
creates a collection of sub-tensors, 𝑈 = {𝑈1, . . . ,𝑈4}. With
two-way data parallelism, each data tensor becomes its own
sub-collection, and the model tensors are grouped by sub-
tensor offset 𝑗 of 𝑡 𝑗

𝑖
: the partitioning function 𝜙 takes 𝑈 and

maps it to 4 sets. These sets are then assigned to the GPUs, 𝑅1
to 𝑅4, by the allocation function 𝛼 , forming a cross-product
of the data and model sub-collections.

4.2 Reconfiguration plan
The PTC abstraction allows Tenplex to decide how to re-
configure a DL job by computing a “delta” between the two
PTCs: if there is a current PTC and a new PTC′, it is possible
to compute a minimal sequence of operations that must be
executed to turn the state of PTC into that of PTC′. We term
such a sequence of operations a reconfiguration plan.
We observe that a reconfiguration plan can be expressed

only in terms of split, re-partition and merge operations.
These operations update the data and model tensors in the
PTC: the reconfiguration plan takes the sliced/partitioned
tensors that exist on the GPU workers, as described by PTC,
and transforms them, so they become the state described by
PTC′. This is done efficiently by only exchanging a minimal
set of sub-tensors between GPU workers.

To generate such a reconfiguration plan, Tenplex consid-
ers the differences between the current PTC functions, (𝜎 ,
𝜙 , 𝛼), and the new ones, (𝜎 ′, 𝜙 ′, 𝛼 ′). It then generates a se-
quence of operations: (i) if the sub-tensors𝑈 of PTC and𝑈 ′
of PTC′ are different, a split operation slices the sub-tensors
according to the current slicing function 𝜎 and the new 𝜎 ′;
(ii) a re-partition operations move the split tensors from a
previous GPU 𝑅 to 𝑅′; and (iii) if sub-tensors were previously
split but are now on the same GPU, a merge operation com-
bines them again to reflect 𝜎 ′. Performing the re-partition
operation between the split and merge operations minimizes
data movement because only necessary tensors are moved.
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Fig. 7. Reconfiguration plan (Edges denote tensor mappings.)

Algorithm 1: Reconfiguration plan generation
Data: PTC = (𝑇, 𝜎,𝜙, 𝛼 ) , PTC′ = (𝑇, 𝜎 ′, 𝜙 ′, 𝛼 ′ )
Resources 𝑅, 𝑅′

Result: Reconfiguration plan P
1 𝑈 ← {𝜎 (𝑡 ) | 𝑡 ∈ 𝑇 } // get sub-tensor collections
2 foreach 𝑟 ∈ 𝑅 do // start SPLIT
3 𝑉 ← {𝑣 | 𝑣 ∈ 𝑈 ,𝛼 (𝜙 (𝑈 ) ) = 𝑟 } // get sub-tensors of 𝑟
4 foreach 𝑣 ∈ 𝑉 do
5 P ← P∥ split(𝑣, 𝜎 , 𝜎 ′)
6 𝑆 ′ ← 𝜙 ′ ({𝜎 ′ (𝑡 ) | 𝑡 ∈ 𝑇 }) // get sub-collections
7 foreach 𝑟 ′ ∈ 𝑅′ do // start RE-PARTITION
8 𝑆 ′𝑟 ← {𝑆 ′𝑖 | 𝑆 ′𝑖 ∈ 𝑆 ′, 𝛼 (𝑆 ′𝑖 ) = 𝑟 } // get sub-tensors of 𝑟 ′

9 foreach 𝑠′ ∈ 𝑆 ′𝑟 do
10 𝑡 ← get_base_tensor(𝜎 ′ , 𝜙 ′ , 𝑠′)

11 𝑊 ← get_split_tensors(𝑡 , 𝜎 , 𝜎 ′)

12 foreach 𝑤 ∈𝑊 do
13 𝑟𝑤 ← get_resource(𝜙 , 𝛼 , 𝑤)

14 P ← P∥ move(𝑤, 𝑟𝑤 , 𝑟 ′) // add MOVE
15 P ← P∥ merge(𝑊 ) // add MERGE

Fig. 7 shows an example of a reconfiguration plan, which
contains tensor parallelism (TP) with 2 GPUs, to PTC′, which
combines tensor (TP) and pipeline parallelism (PP) with
6 GPUs. The tensors must change from a slicing into two
sub-tensors, 𝜎 (𝑡𝑖 ) = {𝑡1𝑖 , 𝑡2𝑖 }, to a slicing, 𝜎 ′ (𝑡𝑖 ) = {𝑡1𝑖 , 𝑡2𝑖 , 𝑡3𝑖 },
into 3 sub-tensors. Therefore, the split operation divides up
each sub-tensor into two parts, which the re-partition oper-
ation moves to new GPUs, as defined by the new partition
function 𝜙 ′, forming the sub-tensor 𝑡 𝑗

𝑖
. In the final step, the

merge operation takes the split tensors and merges them
into required sub-tensors. With PP of degree 2, there is only
1 tensor per stage, and with TP of degree 3, there is only one
sub-tensor per GPU.

Alg. 1 formalizes the computation of reconfiguration planP
from PTC and PTC′. First, Tenplex performs the split: it
starts by generating the current sub-tensor set𝑈 based on
the slicing function 𝜎 . For each resource 𝑟 , it filters the sub-
tensors by the sub-tensors 𝑣 that are on resource 𝑟 (line 3).
For each sub-tensor 𝑣 , it then adds a split operation to the
reconfiguration plan P (line 5). Where to split is decided
based on the current 𝜎 and new slicing 𝜎 ′. Second, Tenplex
considers re-partition: it starts with all sub-collections 𝑆 ′ and
filters them by resource 𝑟 ′ (lines 8). For each sub-tensor, it
gets the base tensor 𝑡 ∈ 𝑇 for the sub-tensor 𝑠′ and how it
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is divided after the split operation (lines 10–11). For each
split tensor, it obtains the resource 𝑟𝑤 for split tensor𝑤 . It
then appends a move sub-operation to the reconfiguration
plan P to move 𝑤 from 𝑟𝑤 to 𝑟 ′ (line 14). Finally, Tenplex
adds a merge operation to P, which merges the split tensors
in𝑊 (line 15).

4.3 Expanding to new parallelism strategies
In addition to data, tensor, and pipeline parallelism, the PTC
abstraction is designed to accommodate new parallelism
strategies. The generality of the PTC functions means that
they can accommodate the parallelization and distribution of
other strategies, such as expert parallelism [61] in a mixture
of experts (MoE) settings [67], and sequence parallelism[41]:

Expert parallelism (EP) can be expressed by using the par-
titioning function𝜙 to group expert-specific tensors together.
Analogous to pipeline parallelism, groups of model tensors
form a partition and then are allocated by the allocation func-
tion 𝛼 to GPUs, i.e., replacing pipeline stage tensors with
model expert tensors. Since EP does not split tensors, the
slicing function 𝜎 is the identity function.
Sequence parallelism (SP) uses the slicing function 𝜎 to

slice data sample tensors along the sequence dimension. This
makes it similar to tensor parallelism, but, instead of splitting
the model tensors, it splits the data sample tensors.

5 Tenplex Architecture
In this section, we describe Tenplex’s architecture and how
it implements the PTC abstraction to reconfigure DL jobs
efficiently after resource changes.

As shown in Fig. 8, Tenplex executes on each worker and
has two main components: a distributed State Transformer
and an in-memory Tensor Store. The State Transformer inputs
the model and dataset partitions from a previous PTC and
creates updated partitions to comply with a new PTC′ after
a resource change; the Tensor Store maintains the model and
dataset state partitions represented by the PTC in a hierarchi-
cal virtual in-memory file system. It offers APIs to interface
with the DL system’s support for model checkpointing and
to allow the DL system to ingest training data.

5.1 State Transformer
When the resources of a DL job change, Tenplex must cre-
ate new state partitions based on the updated parallelization
plan so that the DL system can resume executing the job.
Since this state transformation can be parallelized, Tenplex
maintains an instance of the State Transformer for each re-
source 𝑟 on a worker. Each State Transformer instance then
applies its part of the reconfiguration plan (see §4.2).

Tenplex executes the following steps to modify the job af-
ter a resource change from the scheduler (see Fig. 8): 1 Ten-
plex obtains the training state from the DL system by retriev-
ing a model checkpoint partition per GPU. Each checkpoint
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Fig. 8. Tenplex architecture

is written to a model state partition in the Tensor Store; 2 it
then requests a new parallelization configuration from the
model parallelizer. The new configuration is expressed as
PTC′ and becomes the basis for the reconfiguration; 3 each
State Transformer instance uses Alg. 1 to create the device’s
reconfiguration plan. It compares PTC and PTC′ and infers
the local transformation operations; 4 the State Transformer
then applies the split, re-partition, and merge operations to
generate new state partitions (see §4.2). It retrieves the nec-
essary sub-tensors from either the local or remote Tensor
Stores and saves them in the local Tensor Store; and 5 it in-
structs the DL system to restore the job from the checkpoints
based on the transformed model partitions in the local Ten-
sor Store. After resuming the job, the DL system continues
reading data samples from the local Tensor Store.

The State Transformer is designed to interact with differ-
ent model parallelizers and thus provides a universal method
for describing parallelization configurations. It processes
these configurations as JSON objects with the following
structure: the top level is a list of objects where each fol-
lows the structure of the model that a single GPU hosts, with
the tensor shapes of the model parameters as leaves. From
these objects, the PTC and PTC′ can be constructed.

5.2 Tensor Store
Each worker has an in-memory Tensor Store that contains
the model and dataset partitions for each local GPU. The
Tensor Store maintains the model and dataset tensors in
a hierarchical in-memory file system. The tree hierarchy
follows the model structure, with model parameters and
dataset samples as leaves.
Model state. The Tensor Store exposes an API to the State
Transformer to apply a reconfiguration plan, and to the DL
system to load/store the model state. It supports a NumPy-
like array interface [24] for requesting tensors via a REST
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API: a query request with a path attribute obtains a tensor;
an upload request adds a new tensor at a given path.

A unique feature of the API is that it can be used to request
sub-tensors by defining a range for each dimension, similar
to a Python slice. Requesting sub-tensors is important for
performance, e.g., when re-slicing under tensor parallelism,
because it reduces data movement between workers. The
State Transformer can request sub-tensors instead of com-
plete tensors that would have to be split after transfer. To
obtain a sub-tensor, a query includes a range attribute whose
value specifies the dimension and range. For example, for a
query that slices the second tensor dimension, the attribute
is range=[:,2:4], which returns the sub-tensor for [2, 4).
The Tensor Store uses a simple API to move the model

state in and out of the DL system. To obtain the currentmodel
state, tenplex.save(model, path) maps a Python dictio-
nary with the model state to its hierarchical representation;
tenplex.load(path) maps it back to a Python dictionary
that can be consumed by the DL system.
The model state in the Tensor Store is represented as a

hierarchical tree with node grouping parameters. For exam-
ple, “/2/embedding/weight” is a weight parameter in the
embedding layer of the model state partition 2. The leaves
are sub-tensors, which are implemented as NumPy arrays to
offer compatibility with most DL systems.
Dataset state. The training dataset consists of binary files
with data samples, which either reside on the local disk
or remote storage. Data samples are tensors and Tenplex
represents them as NumPy [24] (npy or npz) arrays.
Tenplex also maintains a dataset index that maintains

the locations of all data samples. Specifically, for each data
sample, it holds the paths to the binary files and byte ranges
within those files. Based on the dataset index, the State Trans-
former can repartition the dataset as necessary into parti-
tions, each with its own indices. To read a data sample, the
DL system invokes a data loader, which uses the partition-
specific index to decide on the relevant binary file and byte
range, reading the corresponding part of the file. The dataset
index is stored in memory and uses 64-bit integer pairs for
the byte range of each sample.

In contrast to the model state, the dataset is immutable and
consumed sequentially. Tenplex leverages this to improve
performance by overlapping training and dataset fetching.
It streams the dataset into the Tensor Store on the workers
while training iterations take place. Since the data sample
order is known at the beginning of an epoch, Tenplex derives
which samples to fetch first to unblock training.

In a typical cloud deployment, the training dataset is stored
on remote storage, e.g., S3 [3] or other blob stores [20, 44].
For training to resume, the data must be accessible by the
workers, but the network bandwidth to remote storage is
typically lower than the inter-worker bandwidth [77]. To
reduce the impact of this, Tenplex tracks the location of

data samples in the dataset index and distinguishes between
remote and locally available data samples. It then prioritizes
fetching samples from other workers and only uses remote
storage if samples are otherwise unavailable.

5.3 Fault tolerance
Whenworkers or GPU devices fail during job execution, Ten-
plex relies on the DL system to recover. After a failure, the
job state is restored from the persisted checkpoints created
by the DL system. Since a failure can be seen as a resource
reduction, Tenplex’s reconfiguration support can be used
to resume a job immediately, without waiting for new GPU
resources. Tenplex thus resumes the job with fewer GPU
devices but with an optimal new parallelization plan.

A deployment with Tenplex is subject to the usual trade-
off between checkpointing frequency and overhead: with
infrequent checkpointing, some job progress is lost after
failure. Tenplex tries to avoid re-executing training steps
due to stale checkpoints: for DL jobs with data parallelism,
Tenplex exploits that the model state is replicated among
workers. As long as at least one model replica remains after
a failure, the state can be retrieved from that GPU.

To accommodate frequent failures in a cluster during train-
ing, Tenplex can replicate themodel state in the Tensor Store
across workers in a round-robin fashion, adding more state
redundancy to the job. To obtain 𝑛 replicas, the state is repli-
cated to the Tensor Stores of the next 𝑛 workers. If a worker
fails and the state in the worker’s Tensor Store is lost, the
state can be recovered from another worker.

5.4 Integration with existing training jobs
To integrate with existing training jobs, Tenplex assumes
that components support specific features. Tenplex makes
the following assumptions about the DL software stack:
Job schedulers (e.g., Kubernetes [5], Pollux [58] , or Ray [47],
Sia [31]) make resource management decisions according to
a metric, such as shortest job first or priority. A job sched-
uler sends to Tenplex the DL model and information about
GPU resources. If a resource change happens, the scheduler
notifies Tenplex about the new resources. Based on this
information, Tenplex orchestrates the reconfiguration and
informs the scheduler after the reconfiguration is completed.
If the number of resources is reduced, the scheduler can
re-allocate the newly available resources.
Model parallelizers (e.g., Alpa [86] and Megatron-LM [68])
receive the DL model and the new resources from Tenplex
and decide on the parallelization configuration. The paral-
lelization configuration is expressed as a JSON object with
the rank-specific model structure and tensor shapes. It de-
scribes how the data and model tensors are partitioned and
mapped to GPUs (§5.1). Tenplex uses the parallelization
configuration to construct the PTC.
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Fig. 9. Elastic DL job convergence with multi-dimensional

parallelism under dynamic GPU changes

DL systems (e.g., PyTorch [54] and JAX [17]) must allow
Tenplex to externalize the DL job state, e.g., through APIs
for extracting/loading model state to/from GPUs. The state
must be expressed as per GPU Python dictionaries with the
model state. For PyTorch, model.state_dict() extracts the
state and model.load_state_dict() loads the state.
Training programs must use Tenplex’s Tensor Store path
when accessing the file system for data ingestion. In addition,
users must replace calls for saving/loading checkpoints with
Tenplex’s corresponding functions (§5.2). In the training
loop, the training programmust also invoke the Tenplex API
to check if a reconfiguration is needed. If so, the training pro-
gram must terminate, and Tenplex re-invokes the training
program with the new resources after having transformed
the job state.

6 Evaluation
We evaluate Tenplex with three use cases: supporting elastic
scaling with multi-dimensional parallelism (§6.2), enabling
job redeployment (§6.3), and handling failure recovery (§6.4).
After that, we investigate Tenplex’s reconfiguration over-
head (§6.5), the impact of different parallelization strate-
gies (§6.6), and its scalability in terms of cluster size (§6.7).
We finish by exploring Tenplex’s effect on model conver-
gence when changing parallelism (§6.8).

6.1 Experimental setup
Our experiments have the following setup:
Cluster.We conduct on-premise experiments with 16 GPUs
(4 machines with 4 GPUs each). Each machine has an AMD
EPYC 7402P CPU, 4 × NVIDIA RTX A6000 GPUs, and PCIe
4.0. The machines are interconnected by 100-Gbps Infini-
Band, and the GPUs are connected pairwise using 3rd gen-
eration NVLink. For experiments with a larger cluster, we
also conduct 32-GPU cloud experiments on Azure [44] with
Standard_NC24s_v3 VMs, each with 4 NVIDIA V100 GPUs.
Baselines. We compare Tenplex to multiple external base-
lines: (i) Torch Distributed Elastic v2.0 and (ii) Horovod-
Elastic v0.28 [28], which are state-of-the-art elastic DL sys-
tems; and (ii)DeepSpeed v0.6 [63] withMegatron-LM v23.06,

which represents the model library approach. All of these so-
lutions can only support dynamic reconfiguration of DL jobs
while changing the degree of data parallelism. We therefore
also compare with (iv) Tenplex-DP, which only reconfigures
data parallelism, and (v) Tenplex-Central that performs all
state repartitioning at a central node.
Models and datasets. We use these representative DNN
models: (i) BERT-large with 340M parameters; (ii) GPT-3 with
1.3B (XL), 2.7B, and 6.7B parameters; and (iii) ResNet-50 with
25M parameters. For the training data, we use: (i) OpenWeb-
Text [19] with 2M samples with a sequence length of 1024;
(ii)Wikipedia [16] with 6.8M samples and the same sequence
length; and (iii) ImageNet [12] with 1M samples.

6.2 Elastic multi-dimensional parallelism
First, we explore the benefits of supporting elasticity in DL
jobs with multi-dimensional parallelism, scaling across all
parallelism dimensions when the GPU allocation changes.
In this experiment, we train DL jobs with the GPT-3 XL

model on the on-premise 16-GPU cluster. The job runtime
and elastic scaling events are derived from Microsoft’s Philly
trace [32]: over the runtime of 538 mins, we scale based on
the average every 35 mins. During a scaling event, we change
the number of GPUs for a job between 16, 8, and 4 GPUs.

We compare the training convergence of Tenplex to Ten-

plex-DP and TorchDistributed Elastic. Tenplex-DP is similar
to Torch Distributed Elastic with Megatron-LM by only scal-
ing dynamically along the data parallelism dimension.

In terms of the scaling decisions, Tenplex reconfigures the
(tensor, pipeline, data) parallelism from (𝑇, 𝑃, 𝐷) = (2, 4, 2)
to (2, 4, 1) to (2, 2, 1), which are the parallelization configu-
rations that achieve the best performance. Tenplex-DP and
Torch scale (𝑇, 𝐷, 𝑃) = (2, 4, 2) to (2, 4, 1), and pause training
with 4 GPUs, because a configuration with pipeline paral-
lelism of 4 and tensor parallelism of 2 cannot run on 4 GPUs.

Fig. 9 shows the perplexity over time, and the scaling
events are indicated as grey vertical lines, annotated by the
GPU count. As we can see, Tenplex only takes 298 mins to
reach the same step that Tenplex-DP reaches after 576 mins
and Torch after 548 mins—a reduction by 18%. Since Ten-
plex can support scaling along all dimensions in DL jobs,
it exploits more optimal parallelization configuration using
the GPU resources more effectively.

6.3 Job redeployment
Next, we evaluate how long Tenplex takes to redeploy DL
jobs with different model sizes onto a new set of GPU re-
sources. As a baseline, we compare against Tenplex-Central,
which follows the approach of PyTorch Elastic [57] or Deep-
Speed [63]: it holds all DL job state at a single central worker.
In this experiment, we therefore specifically explore the ben-
efit of Tenplex’s distributed state management.
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We redeploy a DL job with multi-dimensional parallelism
from one set of 8 GPUs to another 8 GPUs. We measure the
redeployment time on the on-premise clyster with the GPT-3
model with sizes of 1.3 B, 2.7 B, and 6.7 B. The parallelization
configuration is (𝑇, 𝐷, 𝑃) = (4, 2, 1) and remains the same
because the number of GPUs remains unchanged.

Fig. 10 shows the redeployment time under differentmodel
sizes. In all cases, Tenplex achieves a lower redeployment
time than Tenplex-Central: the time for Tenplex-Central
is 2.1× for the 1.3 B model, 1.9× for 2.7 B model, and 2×
for 6.7 B model, respectively, higher compared to Tenplex.
With its distributed state management between State Trans-
former instances on different workers, Tenplex can migrate
state directly between workers. This prevents the network
bandwidth of any single worker from becoming a bottleneck,
which would increase redeployment time.

6.4 Failure recovery
We explore how Tenplex manages to recover from failures,
even in scenarios that require dynamic reconfiguration due
to a change in the number of GPUs. We assume a fail-stop
failure model in which only the GPUs fail. We emulate faults
of 4, 8, and 12 GPUs and measure the failure recovery and
reconfiguration time. We use the GPT-3 2.7 B model with
the Wikipedia dataset on the on-premise cluster. We com-
pare Tenplex to a system that always recovers from the last
checkpoint (denoted as Baseline), which results in an average
loss of 50 training steps. The parallelization configuration is
(𝑇, 𝑃, 𝐷) = (4, 2, 2), i.e., there are two model replicas.
Fig. 11 shows the recovery time in seconds with different

numbers of failed GPUs. Tenplex recovers faster than the
baseline if there exists at least one model replica, i.e., for
failures with 4 and 8 GPUs. Here, Tenplex does not need
to rerun the lost training steps, because it does not rely
on the stale checkpointed state for recovery. With 8 GPUs,

Tenplex takes only 5% of the recovery time of the baseline
and exhibits the same cost as for 12 GPUs.

When there is no redundant model replica available, Ten-
plex uses the last checkpoint and only achieves a slight
performance benefit over the baseline. This is due to using
local storage instead of remote storage when recovering from
the checkpointed state. We conclude that Tenplex reduces
failure recovery times when model replicas are available due
to the parallelization configuration.

6.5 Reconfiguration overhead
This experiment compares the reconfiguration approach
of Tenplex with (i) a model library of an elastic DL sys-
tem (DeepSpeed) and (ii) a virtual device approach that per-
forms full GPU state migration (Singularity).
We use the GPT-3 XL model with the Wikipedia dataset

on the on-premise cluster. We perform one experiment that
scales down resources from 16 to 8 GPUs and another that
scales up from 8 to 16 GPUs. Since Singularity [69] is a closed-
source system, we report numbers from a similar experiment
in its paper, run on similar hardware.

Fig. 12 shows the reconfiguration time. When changing
from 8 to 16 GPUs, Tenplex requires 24% less time than
DeepSpeed and 10% less time than Singularity. Singularity
is slower, because, besides the training state, it also moves
the full GPU device state. DeepSpeed suffers from the fact
that it does not include an explicit mechanism for notifying
DeepSpeed about reconfiguration but instead uses its failure
detection mechanism. The state management approach of
Tenplex is the fastest because it minimizes state movement
due to its awareness of data locality.
The difference becomes larger when scaling from 16 to

8 GPUs: Tenplex needs 64% less time than DeepSpeed and
43% less than Singularity. In this case, DeepSpeed relies
on Torch Distributed Elastic’s failure mechanism, which in-
creases time; Singularity must copy the full GPU state even
though there already is a model replica on the GPUs.
We also compare Tenplex’s overhead to Horovod, a dis-

tributed training library without elasticity support, andHoro-
vod-Elastic, which also supports scaling under data paral-
lelism only by periodically checkpointing the model state.
We deploy a ResNet50 model with the ImageNet dataset
in the on-premise cluster and measure throughput when
training on 2 GPUs.
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Fig. 15. Reconfiguration time with different cluster sizes

Fig. 13 compares the training throughput, measured as
samples per second, for Horovod, Elastic Horovod, and Ten-

plex. Horovod achieves 438 images/s, but with elasticity sup-
port, the throughput drop to 418 images/s. Tenplex achieves
a throughput of 430 images/s, which is about the same as
regular Horovod without elasticity support.

We conclude that, despite supporting dynamic reconfigu-
ration for multi-dimensional parallelism, Tenplex matches
Horovod’s performance. Tenplex’s state management does
not interfere with training, and reconfiguration only incurs
a cost when resources change. Unlike Horovod Elastic, Ten-
plex avoids explicit state synchronization in a blocking man-
ner after a user-defined number of steps, which interrupts
training progress.

6.6 Impact of parallelization type
Next, we examine the impact of the parallelization config-
uration on reconfiguration time for different model sizes.
We deploy Tenplex and Tenplex-Central, which manages
the state in a single node, with the different GPT-3 mod-
els on the on-premise cluster. For data parallelism (D), we
change the configuration from (𝑇, 𝑃, 𝐷) = (4, 2, 1) to (4, 2, 2);
for pipeline parallelism (P) from (4, 2, 1) to (4, 4, 1); and for
tensor parallelism (T) from (4, 2, 1) to (8, 2, 1).
Fig. 14 shows the reconfiguration time for the different par-

allelization configurations and model sizes. With data paral-
lelism (Fig. 14a), Tenplex-Central with GPT-3 6.7 B takes 4×
longer than Tenplex, because of the limited network band-
width of a single worker in comparison with a distributed
peer-to-peer state reconfiguration. We observe similar be-
havior for pipeline and tensor parallelism: under pipeline
parallelism (Fig. 14b), Tenplex-Central takes 3.5× longer and,
under tensor parallelism (Fig. 14c), it takes 3.7× longer. The

only exception is pipeline parallelism with 1.3 B parame-
ters. In this case, network bandwidth does not become a
bottleneck, because the parallelization configuration does
not involve splitting and merging sub-tensors.

We conclude that centralized state management becomes
a bottleneck with many model parameters, due to the limited
network bandwidth and the reduced parallelism when all
state transformations are performed by one worker.

6.7 Impact of cluster size
We want to explore how Tenplex is affected by the GPU
cluster size. In this experiment, we keep the model size fixed
but change the GPU resources in the cluster to evaluate
how the cluster size and parallelization configuration impact
reconfiguration time.

We use the GPT-3 XL on the Wikipedia dataset deployed
in the 32-GPU cloud testbed. We scale the resources from 4 to
8, 8 to 16, and 16 to 32 GPUs for data, tensor, and pipeline par-
allelism, respectively. For each parallelization configuration,
if the number of GPUs doubles, the degree of parallelism
also doubles. We compare Tenplex with the baseline Ten-
plex-Central, as it is the only baseline that supports full
multi-dimensional parallelism.

Fig. 15 shows the reconfiguration time with different de-
vice counts. For data parallelism (Fig. 15a), the time increases
linearly with the number of GPUs, because the number of
model replicas is proportional to the parallelism degree; for
pipeline parallelism (Fig. 15b), the reconfiguration time de-
creases with the number of devices, because the model size
is constant and the total network bandwidth increases with
the GPU count; for tensor parallelism (Fig. 15c), the time
decreases with the GPU count, because the model size is con-
stant and the network bandwidth increases with the devices.
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Fig. 16. Model convergence with reconfiguration

Comparing data, tensor, and pipeline parallelism, the re-
configuration time is the highest with data parallelism, be-
cause the amount of data increases with the number of repli-
cas. While the amount of data stays constant with pipeline
and tensor parallelism, tensor parallelism must split and
merge sub-tensors. The reconfiguration time is lowest with
pipeline parallelism, which only needs repartitioning.

6.8 Impact on model convergence
Finally, we evaluate Tenplex’s impact onmodel convergence.
For this, we use the BERT-large model with the OpenWeb-
Text dataset deployed on the on-premise cluster. At training
step 100, we either increase or decrease the resources and
compare them to a baseline without change.

Fig. 16 shows the model convergence as the loss over the
training steps. With data parallelism (Fig. 16a), i.e., changing
the parallelization configuration from (1, 1, 4) to (1, 1, 8), the
loss does not diverge when the resources increase/decrease
because Tenplex maintains consistent hyper-parameters
and consistent data order.With pipeline parallelism (Fig. 16b),
i.e., changing from (1, 4, 1) and (1, 8, 1), and with tensor par-
allelism (Fig. 16c), i.e., changing from (4, 1, 1) and (8, 1, 1),
convergence is equally unaffected.

7 Related Work
Elastic ML systems [43, 65] support resource changes but
typically only adapt data parallelism by adding/removing
model replicas to/from GPU workers—they leave more gen-
eral state management for multi-dimensional parallelism
to users, which hinders adoption. Torch Distributed Elas-
tic (TDE) [57] only supports changes to data parallelism be-
cause it cannot re-partition state during training. Varuna [4]
needs the user to define partitioning points for pipeline par-
allelism. It then only reconfigures data/pipeline parallelism,
which prevents it from supporting strategies with tensor or
sequence parallelism. Spotnik [76] supports elasticity over
transient GPU resources but only supports data parallelism.
Hydrozoa [23] supports static multi-dimensional parallelism
before training but only allows for dynamic changes to data
parallelism. GoldMiner [85] focuses on adapting data pre-
processing in ML systems, but it does not support multi-
dimensional parallelism. In contrast, Tenplex has a generic

state abstraction for multi-dimensional parallelism and lever-
ages it for automatic reconfiguration.

In terms of reconfiguration performance, TDE and Varuna
follow a centralized approach to state management, i.e., they
load/save state to one machine. This can result in a perfor-
mance bottleneck when re-configuring a large model state.

Dynamic GPU scheduling systems, e.g., Lyra [39], adjust
the numbers of GPUs assigned to jobs. They rely, however,
on elastic ML libraries for the reconfiguration of jobs, making
them complementary to Tenplex.
Checkpointing systems store snapshots of model parame-
ters. When resources change, e.g., after failure, the DL sys-
tem retrieves the latest checkpoint before the failure and
resumes training. CheckFreq [46] dynamically adjusts the
checkpointing frequency, while Check-N-Run [14] uses lossy
compression, trading accuracy for storage efficiency. Server-
lessLLM [18] provides fast checkpoint loading in a serverless
GPU cluster, but it does not support checkpoint reconfigura-
tion as Tenplex does. Gemini [77] and Oobleck [30] provide
fast checkpointing: while the former stores checkpoints in
CPU memory, the latter maintains checkpoints in GPU mem-
ory. These approaches focus only on the performance of
failure recovery, as opposed to the generic runtime reconfig-
uration of Tenplex.
DL job parallelization. DL systems have built-in paral-
lelization support: PyTorch [54] and TensorFlow [1] offer
data parallelism; JAX [17] has pmap and xmap functions to
parallelize computation; and MindSpore [45] uses auto par-
allel search to find an effective parallelization strategy. All of
these approaches only support a subset of multi-dimensional
parallelism and do not offer runtime reconfiguration.

Unity [74] and Alpa [86] search for an optimal distribution
plan and implement a suitable runtime for it. Tenplex uses
such parallelizers when making reconfiguration decisions.
Google XLA [64] and MindSpore have resharding oper-

ators, which are needed for automatic parallelism. These
operators, however, are applied to a single GPU instead of a
GPU cluster, and therefore cannot handle the reconfiguration
of distributed DL jobs with multi-dimensional parallelism,
as supported by Tenplex.
Distributed data analytics systems may have support for
elasticity: some systems, MapReduce [11] or stream pro-
cessing [83], can change the resources of jobs. In contrast,
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DL training jobs with multi-dimensional parallelism require
the concept of a tensor to split the model parameters and
datasets correctly for strategies with tensor parallelism. Elas-
tic Memory [33] supports some DL jobs with data parallelism
but does not handle other parallelism strategies. Cruise [37]
lacks abstractions for tensor splitting.

8 Conclusion
We described Tenplex, a dynamic state management library
for DL jobs with multi-dimensional parallelism. By describ-
ing the state as a parallelizable tensor collection (PTC), Ten-
plex generates efficient reconfiguration plans when the un-
derlying GPU resources for the job change at runtime. Its
distributed state transformers implement the reconfigura-
tion plan on each GPU with a minimum amount of data
movement between workers. Therefore, Tenplex is a step
towards making large-scale long-running deep learning jobs
fully adaptive to resource changes.
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