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Abstract—Portfolio optimization is one of the most studied
optimization problems at the intersection of quantum comput-
ing and finance. In this work, we develop the first quantum
formulation for a portfolio optimization problem with higher-
order moments, skewness and kurtosis. Including higher-order
moments leads to more detailed modeling of portfolio return
distributions. Portfolio optimization with higher-order moments
has been studied in classical portfolio optimization approaches
but with limited exploration within quantum formulations. In the
context of quantum optimization, higher-order moments generate
higher-order terms in the cost Hamiltonian. Thus, instead of
obtaining a quadratic unconstrained binary optimization prob-
lem, we obtain a higher-order unconstrained binary optimiza-
tion (HUBO) problem, which has a natural formulation as a
parametrized circuit. Additionally, we employ realistic integer
variable encoding and a capital-based budget constraint. We
consider the classical continuous variable solution with integer
programming-based discretization to be the computationally
efficient classical baseline for the problem. Our extensive exper-
imental evaluation of 100 portfolio optimization problems shows
that the solutions to the HUBO formulation often correspond to
better portfolio allocations than the classical baseline. This is a
promising result for those who want to perform computation-
ally challenging portfolio optimization on quantum hardware,
as portfolio optimization with higher moments is classically
complex. Moreover, the experimental evaluation studies QAOA’s
performance with higher-order terms in this practically relevant
problem.

Index Terms—portfolio optimization, higher-order binary op-
timization, QAOA, higher moments

I. INTRODUCTION

A key goal of quantum algorithm development is to identify
and construct well-motivated problems that can be solved
faster or more efficiently on quantum computers than on
classical hardware in real-life applications. At the intersection
of quantum computing and finance, portfolio optimization is
one of the most studied and promising problems in this regard
[1]–[17]. Some of the reasons for its popularity are its central
role in finance and the fact that it has a straightforward quan-
tum computational formulation as a quadratic unconstrained
binary optimization (QUBO) problem. This article presents
a more advanced higher-order portfolio optimization problem
for quantum computers and benchmarks its performance with
the standard quantum approximate optimization algorithm
(QAOA) [18]. The problem formulation includes encoding of
higher-order moments: skewness and kurtosis. Additionally,
we consider realistic integer variables and a capital-based
budget constraint.

Our problem formulation can be divided into two parts: the
higher-order unconstrained binary optimization formulation
and the classical continuous variable formulation. A solution
to both problems is an allocation, which describes how many
assets an investor should buy, staying close to the budget.
Comparing the expected returns of the allocations and the
leftover budgets provides precise metrics for evaluating these
two methods. Higher-order unconstrained binary optimization
problems are eigenvalue problems that can be solved with
QAOA. However, QAOA has not been extensively experimen-
tally evaluated in these types of real-world higher-order opti-
mization use cases. The classical continuous variable solution
is a standard classical algorithm to solve portfolio optimization
problems [19]. It is efficient because it utilizes continuous
variables, which are generally easier to optimize than integer
variables [20], [21].

The contributions of this work are as follows.

• We develop the first quantum portfolio optimization prob-
lem that includes higher moments (skewness and kurto-
sis), making the optimization problem more realistic.

• Our evaluation shows that the solution quality of the
higher-order binary optimization formulation is often
better than the solution quality of the classical continu-
ous variable formulation with integer programming-based
discretization. This finding motivates further research of
higher-order binary optimization with quantum methods.

• The experimental evaluation benchmarks QAOA on 100
instances of higher-order binary portfolio optimization
problems and identifies several challenges associated with
its application.

a) Related work on quantum and finance: Finance is
one of the key areas where quantum computing is believed
to produce value even in the near future [3], [4], [22]. So far,
portfolio optimization has been the most studied problem in
finance with quantum computing [1]–[4], [6]–[10], [23] and
its connection to spin glass energy minimization problems
was suggested as early as 1998 [5]. Interestingly, higher-order
polynomials or higher-order problems have not been discussed
in the literature, except in [7], where they are briefly mentioned
in the context of developing more suitable penalty functions
for the budget constraint.

Table I reveals that no previous work has benchmarked
portfolio optimization with QAOA using the realistic capital-
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TABLE I: Quantum portfolio optimization approaches. If some
works have not evaluated problems or used only a small
number of them, this indicates that the research focus has been
theoretical.

Paper Integer vars Capital budget #Problems evaluated Method

[7] Yes No - Annealing
[11] Yes Yes 1000 Counterdiabatic
[15] Yes Yes 4 Annealing
[2] No No 20 QAOA
[17] No No 209 QAOA
[5] Yes Yes 3 Theory
[12] No No 1 QAOA
[6] No No 210 Annealing
[14] Yes No 6 Various
[1] Yes Yes 3 VQE
[16] No No 2 Walks
[8] Yes Yes - HHL
[24] Yes Yes 6 HHL++

[25] No No - QAOA
[9] No No 20 Annealing

based budget constraint and integer variables as we do in this
work. None of the earlier works have employed higher-order
moments. This is also the first time classical continuous vari-
able portfolio optimization with an integer programming-based
discretization has been compared to quantum formulations.

b) Related work on higher-order binary optimization:
In this work, we apply a higher-order unconstrained binary
optimization (HUBO) model [26]. The HUBO problems re-
semble QUBO problems except that higher-degree interactions
between the binary variables are allowed. Formally, given a
binary variable vector x = (x1, . . . , xn) of length n and the
index set [n] = {1, . . . , n}, the objective function is

f(x) =
∑
S⊂V

αS

∏
i∈S

xi, (1)

where αS ∈ R and S runs over all the subsets of [n].
Without relying on quantum computing, HUBO problems

can be addressed by using various classical methods, which
often employ approximation methods, especially for larger
problem sizes, due to the exponential nature of the problem.
Integer programming methods can be utilized to approximate
solutions to HUBO problems, but are limited by exponential
complexity and do not guarantee exact feasibility [27]. Differ-
ent learning-based methods, such as graph neural networks,
can approximate HUBO solutions [28], but they might not
generalize well to unseen problems and can require significant
training data. Previously, simulated annealing has been used to
solve HUBO problems [29]. While these classical approaches
remain competitive in solving small- to medium-scale problem
sizes, they struggle with scalability, which could be potentially
addressed with quantum native approaches.

Solving HUBO problems on quantum computers is a small
but growing area of interest in quantum optimization. Con-
sidering the previous work, [30] studied solving a higher-
order graph coloring problem with QAOA. Bias-field dig-
itized counterdiabatic quantum optimization [31], [32] has
been developed as a method to improve solving higher-order
problems and there are methods to optimize variational circuits

for higher-order binary problems [33]. Higher-order problems
have also been used as a benchmark between QAOA and
quantum annealing [34]–[37] and they have been used to
understand the scaling of QAOA and its parameter concentra-
tion [38]. Some initial applications of HUBO problems have
been join order selection in relational database optimization
[39], formalizing search for practical matrix multiplication
algorithms [40], and optimizing railway rescheduling [41].

This paper begins by reviewing the classical mean-variance
portfolio optimization problem and its extension to higher mo-
ments. We briefly discuss discretization via integer program-
ming before formulating the quantum optimization approach,
focusing on binary encoding and capital-based budgets. We
then present the experimental setup, results, and visualizations,
followed by conclusions and future directions. The implemen-
tation is available on GitHub [42].

II. BACKGROUND

We use consistent notation for variables across the paper:
wi ∈ [0, 1] are the continuous variables in the unit interval,
zi ∈ Z≥0 are non-negative integer variables, xi ∈ {0, 1} are
binary variables and si ∈ {−1, 1} are spin variables.

A. Markowitz mean-variance portfolio optimization

In the original Markowitz mean-variance portfolio optimiza-
tion problem [43], we are given a set of assets and a budget.
The goal is to invest the optimal amount in these assets to
maximize the expected return or minimize the financial risk.
The key information in portfolio optimization is the price data
of the assets from a selected time period. Assume that we have
n assets indexed with i ∈ [n] = {1, . . . , n} and let pti denote
the price of the asset i at time t. By using this price data, the
return rt+1

i is calculated for each asset between time t and
t+ 1 as

rt+1
i =

pt+1
i − pti

pti
. (2)

In real-life portfolio optimization, we are interested in the
expected return values of assets over a selected time period,
smoothing daily variation. Multiple methods exist to estimate
the portfolio moments based on the returns in Eq. (2), and
making accurate estimations is an active area of research.
Some standard ways have been implemented in [19], and we
rely on these regarding the first two moments. For each asset
i, the mean returns can be computed either as an arithmetic
mean

µi
A,f =

f

m

m∑
t=1

rti . (3)

or as a geometric mean [19]

µi
G,f =

(
m∏
t=1

(1 + rti)

) f
m

− 1, (4)

where f is a so-called frequency. Usually, in finance, the mean
return values are annualized. Therefore, we set the frequency
as the number of trading days in a year, f = 252. In this work,
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we choose the geometric mean for calculating the mean return
values since it is the default in [19].

The mean returns µ = (µi)
n
i=1 form the so-called first mo-

ment. The second moment is the covariance. The covariance
between assets i and j can be defined as

cij =
f

m− 1

m∑
t=1

(rti − µi
A,f=1)(r

t
j − µj

A,f=1), (5)

where we have taken into account annualization by scaling
the regular covariance with a frequency of f = 252. The
arithmetic mean µi

A,f=1 is the mean value given in Eq. 3 using
frequency f = 1. The covariance matrix is c = (cij)

m
i,j=1. We

will define the third and fourth moments later. Before that,
we briefly explain how the standard mean-variance portfolio
optimization is formulated.

Let w = (wi)i∈[n] be the vector of continuous variables.
We assume that w ≥ 0, which means that short selling is
not allowed, which is a common assumption [2]. The very
first mean-variance portfolio optimization formulation aims to
balance expected returns and risks so that either the returns are
at least at a fixed level or the risks are at most at a fixed level.
In the first case, the mean target return is fixed to µfix ∈ R,
and we solve the following quadratic programming problem
with linear constraints:

minimize w⊤cw
subject to w⊤µ ≥ µfix,

1⊤w = 1.
(6)

The constraint 1⊤w = 1 is the shorthand notation for∑
i wi = 1, which means that 100% of the budget is invested.

This program has a quantum formulation presented in [8]. In
other words, the program aims to minimize risk, as modeled
using covariances, while maintaining a fixed level of returns.
Alternatively, we can formulate an optimization program that
maximizes the mean returns while keeping the risk at an
acceptable level:

maximize w⊤µ
subject to w⊤cw ≤ qfix,

1⊤w = 1.
(7)

Here, the value qfix ∈ R is the value that controls the investor’s
risk level. Next, we further develop these formulations and
connect them to quantum computing.

B. Discretization

The original portfolio optimization formulation is defined in
terms of continuous weights wi ∈ [0, 1]. The solution to the
continuous variable problem indicates that an investor should
invest wi · 100% of the budget in asset i. This creates a
challenge, as we need to find a way to interpret the continuous
weights as a discrete number of assets. This subsection reviews
an integer programming-based method to discretize these
continuous weights for a given budget [19].

In discretization, we need information about the current
prices of the stocks. Let pτ = (pτi )

n
i=1 be the vector of

closing prices from the last time moment τ to calculate the

optimal allocation of stocks. In discretization, the goal is to
convert the continuous variable weight vector w ∈ [0, 1]n into
a vector of integer variables z ∈ Zn

≥0. Here, the integer vector
z represents the quantities of each stock to be purchased to
achieve the optimal portfolio. Thus, the integer vector z is the
variable to be optimized in the discretization process. Let C
be the total capital and Cextra = C−(pτ )⊤z be the remaining
unallocated capital. Then, the optimization problem is given
by

minimize Cextra + |Cw − z⊤pτ |
subject to Cextra + z⊤pτ = C,

z ∈ Z≥0.
(8)

The solution to this optimization problem is an integer vector
z describing the discrete allocation of stocks.

C. Introducing discrete variables

Asset prices and quantities are discrete in real life. Modeling
them with continuous variables is computationally more effi-
cient, but leads to certain problems and inaccuracies. Continu-
ous variables may produce impractical solutions using real-life
constraints, including minimum purchase sizes and indivisible
assets. Continuous solutions might allocate small fractions of
capital to many assets, which is infeasible in real markets
due to transaction costs and indivisibility. The previous in-
teger programming-based allocation does not necessarily fix
these issues in practice because the discretization problem is
separate from the optimization, which optimizes the weights.

In the following, we formulate the problem using integer
variables, making the problem NP-hard. Instead of defining a
weight vector w = (wi)i∈[n], we define an integer variable
vector z = (zi)i∈[n] such that zi ∈ Z≥0. The interpretation
of this vector is as follows: after optimizing the portfolio, we
should have zi many assets of asset type i. This formulation
eliminates the need for discretization, as we automatically
obtain a discrete solution. The following subsections will
express the classical portfolio optimization using integer vari-
ables. Later, we will explain how the integer variables can be
mapped to binary variables, which are used in the quantum
formulation.

D. Unconstrained mean-variance portfolio optimization

Compared to the previous linear and quadratic programs
in Eq. (6) and Eq. (7), we can also optimize the mean and
variance simultaneously without limiting their values in the
constraints. The weights should be optimized to maximize
the mean return from the assets while minimizing the risk.
The parameter q0 > 0 controls the investor’s willingness to
take risks and the balance between risks and mean returns.
In this case, the unconstrained portfolio optimization problem
becomes

min
z∈Zn

≥0

q0z
⊤cz − z⊤µ. (9)

This unconstrained formulation assumes an unlimited, un-
realistic budget, leading to an unbounded problem without
a feasible solution. Therefore, we must include a budget
constraint to obtain a viable solution.
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E. Budget constraint

The budget constraint limits the total amount of capital that
an investor can invest, and thus, it limits the number of assets
that an investor can buy. This work assumes that the investor
prefers to use the whole budget.

Considering the continuous variable formulation, the prob-
lem with the budget constraint becomes

minimize q0w
⊤cw − w⊤µ

subject to 1⊤w = 1.

As we can see, this formulation does not depend on the capital
but assumes that we invest 100% by constraining 1⊤w = 1.
The discretization program in Eq. 8 is solved to obtain a
capital-based discrete allocation.

There are two slightly different ways to encode the budget
for the discrete optimization cases: the budget can be expressed
in terms of assets or in terms of capital. Let us first consider the
budget, which is expressed in terms of assets. In other words,
this means that the sum 1⊤z =

∑
i zi for z = (z1, . . . , zn)

should be limited. Let B ∈ Z>0 denote the budget in terms of
assets, i.e., the number of assets that the investor can buy. After
including the budget constraint, the previous unconstrained
portfolio optimization in Eq. 9 becomes constrained:

minimize q0z
⊤cz − z⊤µ

subject to 1⊤z = B,
z ∈ Zn

≥0.

This formulation selects a combination of assets such that their
total value is B.

The problem with the previous discrete formulation is that
it assumes that every asset has the same price, which is a very
unrealistic simplification. The budget should be given as an
investor’s capital, which is a real number that describes the
amount of capital the investor can invest in the market.

Next, we describe how to encode a realistic capital-based
budget. Let C ∈ R>0 be the investor’s capital. Let pτ =
(pτi )

n
i=1 again denote the vector of closing prices from the

last time moment τ , i.e. pτ are the current prices that the
investor uses to buy the stocks. Now the relation between
discrete quantities of assets z, their recent closing prices pτ

and the capital C (monetary budget) can be written as follows
n∑

i=1

pτi zi = z⊤pτ = C. (10)

Using the capital-based budget, the discrete optimization prob-
lem obtains a slightly modified formulation:

minimize q0z
⊤cz − z⊤µ

subject to z⊤pτ = C,
z ∈ Zn

≥0.

In real-life cases, this leads to the problem that there might
not be an integer variable solution that satisfies the constraint
z⊤pτ = C exactly. We will discuss this problem in more
detail later and concretely show how it affects the evaluation
of different portfolios.

F. Higher moments

Mean-variance portfolio optimization assumes normally dis-
tributed returns, which often do not reflect reality. To better
estimate risks, researchers have incorporated higher moments,
skewness and kurtosis, into the model [44]–[46]. Positive
skewness indicates a long right tail and it is desirable as
it suggests a higher chance of significant positive returns.
In contrast, high kurtosis reflects fat tails and sharp peaks,
signaling a greater risk of extreme outcomes, which investors
typically avoid. Therefore, we aim to maximize skewness and
minimize kurtosis.

Expected returns form a one-dimensional vector, and covari-
ances form a two-dimensional matrix. We define the coskew-
ness of returns as a three-dimensional tensor S = {Sijk}i,j,k
for i, j, k = 1, . . . , n as

Sijk =
E[ri − E[ri]]E[rj − E[rj ]]E[rk − E[rk]]

σiσjσk
, (11)

and co-kurtosis of returns as a four-dimensional tensor K =
{Kijkl}i,j,k,l for i, j, k, l = 1, . . . , n as follows:

Kijkl =
E[ri − E[ri]]E[rj − E[rj ]]E[rk − E[rk]]E[rl − E[rl]]

σiσjσkσl
.

(12)
To simplify the notation, we denote

S(z) :=

n∑
i=1

n∑
j=1

n∑
k=1

Sijkzizjzk and

K(z) :=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Kijklzizjzkzl.

Then, the skewness and kurtosis can be included in the
optimization problem:

minimize q2K(z)− q1S(z) + q0z
⊤cz − z⊤µ

subject to z⊤pτ = C
z ∈ Zn

≥0.
(13)

This approach yields a higher-order problem for more realistic
portfolio optimization with integer variables and a budget
constraint that reflects the actual capital. Moreover, this for-
mulation is relatively close to the higher-order unconstrained
binary optimization format in Eq. (1). We must still rewrite
the constrained optimization problem as the equivalent uncon-
strained problem and translate the integer variables into binary
variables. We describe this process in the following subsection,
connecting this problem and its quantum formulation. Note
that the same problem can be expressed in terms of continuous
variables as

minimize q2K(w)− q1S(w) + q0w
⊤cw − w⊤µ

subject to 1⊤w = 1.
(14)

Finally, we are left to choose the scaling values q0, q1, and
q2. Finding suitable values is generally a problem in finance.
In this work, we choose

q0 =
risk aversion

2
, q1 =

risk aversion

6
, q2 =

risk aversion

24
,
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which are motivated by the so-called Edgeworth expan-
sion for distributions with higher moments [47]. We choose
risk aversion = 3.

Example II.1. Next, we show an example to demonstrate
how the continuous variable algorithm works in practice. The
same example data is used throughout the article. We fix two
companies: the Walt Disney Company (DIS) and the Travelers
Companies, Inc. (TRV). The stock market data covers 10
years, from January 1, 2015, to January 1, 2025. The budget
is randomly fixed at 723. First, we compute the expected
returns vector with Eq. (4), covariance matrix with Eq. (5),
coskewness tensor with Eq. (11), and cokurtosis tensors with
Eq. (12). With this data, we construct the optimization problem
defined in program (14). Solving the problem employs the
Sequential Least Squares Programming, which is the default
method in Scipy for these types of problems. The solution to
the problem is a weight vector for the assets. In this case,
the solution is DIS: 63% and TRV: 37%. These continuous
weights are discretized with the integer program defined in
Eq. (8). The final allocation is DIS: 4 and TRV: 1 with a
left-over budget of 37.4.

III. QUANTUM FORMULATION

This section reformulates the classical higher-order port-
folio optimization problem as a higher-order unconstrained
binary optimization problem. Then, we discuss how to map
the portfolio optimization problems to spin system energy
minimization problems. Finally, we present the QAOA circuit,
which is the last step before applying the standard QAOA
quantum-classical optimization loop.

A. Encoding budget constraint

In quantum formulations for optimization problems, an
unconstrained cost function is necessary. The constrained port-
folio optimization problem can be written as an unconstrained
problem by heavily penalizing cases that do not respect the
constraint. In the case of portfolio optimization, this means
introducing a term that is dependent on the remaining budget.
The idea is that if the budget constraint is violated, it increases
the value of the cost function, penalizing undesirable solutions.
Hence, we include the term λ(z⊤pτ −C)2 to the cost function
in Eq. (13) and obtain the final cost function in terms of integer
variables for the higher-order portfolio optimization, which can
be written as

min
z∈Zn

≥0

q2K(z)−q1S(z)+q0z
⊤cz−µ⊤z+λ(z⊤pτ−C)2, (15)

where λ > 0 is a constant, determining the weight of the
budget constraint. The constraint for the remaining budget
is always non-negative. The penalizing constant λ should
be sufficiently large so that we favor solutions that in-
vest the entire budget. In this work, we explored λ ∈
{0.001, 0.01, 0.1, 0.9, 1.0, 10, 100, 1000}.

Unfortunately, this formulation does not distinguish between
allocations that invest over the budget and allocations that

invest under the budget. They are both treated similarly be-
cause the term (z⊤pτ −C)2 is symmetric with respect to such
solutions. It is possible that investing over the budget might not
be possible, and thus, we want to avoid such solutions fully.
To address this problem, we refine the formulation further.
We adopt the constraint encoding idea from [48]. Instead of
considering a budget that is a real number, we approximate it
by the closest integer. Let M = ⌊log2(C)⌋, where C is the
the budget capital. Then, we can rewrite the budget as

M−1∑
n=0

2nyn + (C + 1− 2M )yM , (16)

where y1, . . . , yM are binary variables. Then, the penalty term
that theoretically prevents us from investing more than we have
in the budget is

λ(z⊤pτ −
M−1∑
n=0

2nyn − (C + 1− 2M )yM )2.

The idea is to activate and deactivate the binary variables
y1, . . . , yM depending on how much budget is used. However,
the optimal point will never include allocations where we
would invest more than the budget. Although this encoding
adds only a logarithmic overhead to the encoding, it easily
creates portfolio optimization problem instances with a rela-
tively large number of qubits. Hence, we continue with the
first encoding in Eq. (15) so that both cases are penalized
equally. We will discuss the effects of this choice later in the
discussion section.

B. Variable encoding in quantum formulation

Since we are developing the portfolio optimization on quan-
tum computers, we must use binary variables. To use integer
variables that are encoded with binary variables, we employ a
similar method as in Eq. (16), which is the standard variable
rewriting method from [48]. The same encoding was also used
in [1]. The method translates integer variables into binary
variables with a logarithmic overhead. Let z be an integer
variable that obtains values at range 0, . . . , N . First, choose
M = ⌊log(N)⌋ with base 2 which implies 2M ≤ N ≤ 2M+1.
Then, instead of using the naive encoding with y1, . . . , yM
binary variables, we can employ the logarithmic encoding as

z =

N∑
n=1

nyn → (N + 1− 2M )yM +

M−1∑
n=0

2nyn. (17)

We must know the range 0, . . . , N for the integer variables
to rewrite the integer variables as binary variables. In portfolio
optimization problems, this range can be computed from the
latest prices and the budget. For each integer variable zi that
is assigned to an asset i, we have the latest price pτi . Then,
the maximum amount of assets we can buy is ⌊pτi /B⌋, i.e.,
investing the whole budget to a single company, providing us
with the range. We obtain the final higher-order unconstrained
binary optimization problem when this variable transformation
is applied to the problem formulation in Eq. (15).
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q0

q1

q2

q3 Rz(α∆t)

Fig. 1: Circuit block encoding higher-order term αZ0 ⊗Z1 ⊗
Z2 ⊗ Z3

C. From optimization to spin system energy minimization

Following the binary formulation, the previously described
portfolio optimization cost function in Eq. (15) is mapped to
the Hamiltonian minimum eigenvalue problem. The goal is to
find a configuration of spin variables that minimizes the energy
of the whole system. In the portfolio optimization problem,
the Hamiltonian can be written using Pauli-Z operators that
have eigenvalues ±1. In binary optimization problems, using
the mapping xi = 1

2 (1 − si), we map the binary variables
xi ∈ {0, 1} to the spin variables si ∈ {−1, 1}. Therefore, the
portfolio optimization problem can be written as finding the
minimum eigenvalue of the Hamiltonian corresponding to the
lowest cost function value.

D. QAOA circuit

In this subsection, we describe how to construct the
parametrized QAOA circuit from the Hamiltonian that de-
scribes the higher-order unconstrained binary optimization
problem in Eq. (15). Let I be the indexing set, i.e., in this
case, the set containing the qubits. Currently, the Hamiltonian
has the following form

H =
∑
S⊂I

αS

∏
i∈S

Zi. (18)

This is necessarily the same formulation that we expressed
for abstract HUBO problems in Eq. (1). In this higher-order
portfolio optimization case, the size of the sets satisfies |S| ≤
4, which follows from the dimension of the cokurtosis tensor.
The other typical case is the QUBO problems where |S| ≤
2. As described in [49], the quantum circuit implementing
e−iH∆t is relatively easy to construct, and the idea generalizes
the method for QUBO problems. For example, consider that
the Hamiltonian H contains a term αZ0⊗Z1⊗Z2⊗Z3. This
becomes the circuit block that is visualized in Fig. 1.

Additionally, the QAOA circuit consists of the mixer layer,
and we employ the standard x-mixer. Finally, the expectation
value of the cost Hamiltonian is measured. Modern quantum
computing frameworks, such as Qiskit and Pennylane, perform
the QAOA circuit construction and parametrization automati-
cally, even for higher-order problems.

Example III.1. We continue Example II.1 by creating the
corresponding higher-order binary optimization problem for
the portfolio optimization problem, which includes Disney and
Travelers Company. The closing prices for the companies are
DIS: 111 and TRV: 240. The budget is 723. If the entire capital

is allocated to DIS, it is possible to buy at most ⌊723/111⌋ =
6 assets of Disney and, similarly, ⌊723/240⌋ = 3 assets of
Travelers. At least 3 qubits are needed to encode the integers
in the interval [0, 6] for Disney and 2 qubits for integers in
interval [0, 3] for Travelers. Thus, the problem is encoded with
5 qubits.

Again, the expected returns, covariances, coskewness, and
cokurtosis are computed. Based on this data, the corresponding
unconstrained integer variable optimization problem described
in Eq. (15) is constructed. Then, the integer variables are
translated into binary variables by employing the substation in
Eq. (17). For example, for Disney, the following substitution
is performed at every position in the formulation

z → x0 + 2x1 + 4x2,

where z is the integer variable in interval [0, 6] and x0, x1and
x2 are binary variables. Three binary variables, i.e., three
qubits, encode a single integer variable z. Again, these binary
variables x0, x1 and x2 representing the integer z are mapped
into the spin glass ground state energy problem by using
xi ↔ (1 − Zi)/2 as explained earlier. This is the final form
for the Hamiltonian that encodes the higher-order portfolio
optimization problem.

As in the standard QAOA, the higher-order problem be-
comes a parametrized quantum circuit. For this example, the
circuit is partially visualized in Fig. 2. The figure includes
an example of all terms with varying degrees from the first to
fourth degree. The corresponding Pauli matrices from the final
Hamiltonian are visualized on top of each term. The values
in Rz-gates are obtained from the stock data and the initial
parameter values for the algorithm.

For this example, the solution for the corresponding higher-
order binary optimization problem is DIS: 0 and TRV: 3, and
the left-over budget is 2.9. The problem is solved by finding
the eigenvalues and eigenvectors of its Hamiltonian. In this
particular case, QAOA could also find this optimal point.

IV. EXPERIMENTAL SETTING

This section describes the experimental setup that demon-
strates the utility of the proposed algorithm compared to the
classical baselines and mean-variance portfolio optimization.
We describe the stock market data used to create the optimiza-
tion problems, followed by the classical baseline implementa-
tions and the employed optimizers.

1) Data sets: We used the Dow Jones Industrial Average
(DJIA), a stock market index that tracks 30 large, publicly
traded U.S. companies. These companies represent a diverse
range of industries, including technology, finance, healthcare,
and consumer goods. The tickers (i.e., the shorthand stock
market names) for the companies were downloaded from the
Python library pytickersymbols [50], and the stock market data
was downloaded from yfinance [51]. We downloaded data
from January 1, 2015, to January 1, 2025, spanning ten years.

Next, we describe how we have constructed the portfolio
optimization problems. We randomly sampled between 2 and
10 companies from the 30 companies in the index. Then, we
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q0 H Rz(−0.01) Rz(0.04)

q1 H Rz(−0.02)

q2 H Rz(0.09) Rz(−0.13) Rz(5.60)

q3 H Rz(−7.62) Rz(2.80)

q4 H

Z0 ⊗ Z1 Z0 ⊗ Z2 Z0 ⊗ Z1 ⊗ Z2 Z0 ⊗ Z1 ⊗ Z3 Z0 ⊗ Z1 ⊗ Z2 ⊗ Z3 Z0 ⊗ Z1 ⊗ Z2 ⊗ Z4

Fig. 2: Part of the QAOA circuit

randomly assigned a budget, which we limited to 6000. If the
budget exceeded 6000, it was unlikely that the corresponding
higher-order QAOA circuit for the portfolio optimization prob-
lem would have been simulable with the available resources.
We calculated the number of qubits required for this portfolio
optimization case. If the number of qubits was over 15, we
excluded the optimization case from the dataset. Otherwise,
it was included until every case from 6 to 15 qubits had
ten random problems. This way, we obtained 100 random
portfolio optimization problems that were ensured to fit a 15-
qubit simulator.

Next, we argue that the stock market data included in the
experimental dataset is not normally distributed, meaning it
exhibits skewness and kurtosis. This motivates us to include
the higher moments in the optimization problem. Fig. 3
demonstrates returns distributions for two companies, 3M
and Travelers. Compared to the normal distribution, both
distributions show clear positive kurtosis, i.e., the high peak.
The distribution for Travelers also exhibits negative skewness,
as the distribution has shifted to the right. Later in the
discussion section, we will also explore how including higher-
order moments produces more diverse portfolios, which can be
considered a positive argument for including those moments.

2) Classical algorithms and optimizers: We employ clas-
sical optimizers in three different ways: classical optimizers
solve the classical continuous variable baseline, another classi-
cal optimizer is used in the classical subroutine of QAOA, and
a standard eigenvalue solver computes the exact spectrum for
the HUBO problems when we have less than 14 qubits. When
the problem consists of 14 or 15 qubits, we used the sparse
eigenvalue solver, which does not return the whole spectrum
but only approximates the smallest eigenvalues.

First, the classical continuous variable baseline utilizes
SLSQP (Sequential Least Squares Programming), which is
the default optimizer for SciPy if the optimization problem
has constraints and bounds. Then, an integer program turns
the continuous variables into discrete allocations. The integer
program is solved with CVXPY [52], [53].

Second, we benchmarked six optimizers (Powell, SLSQP,
COBYLA, CMA-ES, Nelder-Mead, and L-BFGS-B) in the
QAOA’s subroutine. A brief comparison of the optimizers
for solving higher-order portfolio optimization with QAOA is
presented in Figure 4. The lowest average objective function
values can often be achieved with the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [54]–[56], but this

Fig. 3: Return distributions for two companies with one of the
highest skewness and kurtosis terms. The actual distribution
of companies’ return values is presented in purple, and the
normal distribution is denoted as a red dotted line. From the
figures, it is clear that the assumption of a normal distribution
of returns is often inaccurate; therefore, higher-order portfolio
optimization may be a better approach to modeling the prob-
lem.

comparison lacks, for instance, noise and hyperparameter
search. Nevertheless, we chose to investigate the performance
of the QAOA algorithm with a CMA-ES optimizer. The
optimizer is a stochastic gradient-free numerical optimization
algorithm for complex (non-convex, ill-conditioned, multi-
modal, rugged, and noisy) optimization problems in contin-
uous search spaces. We have not previously seen it employed
as an optimizer for QAOA. We chose σ = 0.1 for the CMA-ES
algorithm and limited the number of iterations, but the other
hyperparameters were left to their default values.

Finally, we briefly describe the classical baselines. The
classical baseline is to use the continuous variable higher-
order program in Eq. 14. As noted earlier, this formulation
is solved so that it does not invest over the budget, i.e.,
the budget constraint is strictly satisfied. On the other hand,
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in optimizing the QAOA circuits solving the HUBO problem.
Shaded areas represent 95% confidence intervals around the
mean. The results are only presented for optimizers that can
complete at least 8 of 10 problems for each qubit count.

the quantum formulation does not strictly satisfy the budget
constraint because the constraint is part of the objective
function. Thus, we have included the unconstrained continuous
variable formulation

min
w∈[0,1]n

q2K(w)− q1S(w) + q0w
⊤Σw− µ⊤w+ (1⊤w− 1)2,

(19)
which is closer to the HUBO formulation. Both continuous
variable solutions are discretized with the program in Eq. (8).

3) Evaluation metric: The integer optimization problem
was described in Eq. (13). It consists of two parts: the objective
function

f(z) = −q2K(z) + q1S(z)− q0z
⊤cz + µ⊤z, (20)

and the budget constraint. The objective f(z) provides a
value that can be used to compare different solutions. On the
other hand, in real-life portfolio optimization, we rarely find a
portfolio allocation with the same value as the budget. Thus,
the realistic final result always breaks the budget constraint,
and this difference in budget should penalize the solution.
Hence, the final evaluation for a solution z should be based
on the value obtained from the objective function f(z) and
the difference in budget denoted by di.

Each method produces a discrete portfolio allocation z.
The values from the cost function f(z) without the budget
constraint vary greatly between different portfolio optimization
cases. Thus, we employ min-max normalization, which is
commonly used in machine learning. This normalizes the value
of f(z) to the interval [0, 1] and is defined

fnorm(z) =
f(z)−min {f(zi) | i ∈ I}

max {f(zi) | i ∈ I} −min {f(zi) | i ∈ I}
,

(21)
where I is the set containing the indices for different methods,
i.e., classical methods, QAOA, and exact eigensolver, and zi
are the optimized allocations for each method i ∈ I .

V. RESULTS

In this section, we discuss our findings and visualize the
problem characteristics that explain QAOA’s performance in
comparison with the exact solution and classical methods in
this higher-order portfolio optimization problem. Due to space
limitations, we have included the results from the smallest
qubit counts, ranging from 6 qubits to 8 qubits, and the largest
qubit counts, ranging from 12 to 15 qubits. The complete set
of detailed results can be viewed on GitHub [42].

The selection of λ-values, which balances between the ob-
jective function in Eq.20 and the budget constraint, affects the
performance of QAOA. We performed the same optimization
setup with varying λ values (0.001, 0.01, 0.1, 1.0, 0.9, 10, 100,
and 1000). In the results, we present the QAOA performance
with the most suitable λ. Due to space limitations, we do
not visualize the optimal λ for each optimization problem.
However, generally, values higher than 1 performed the best.

We also briefly discuss how much the QAOA algorithm im-
proves the probability of measuring the state that we consider
as a solution compared to the randomly sampled state. For
each qubit we compute a so-called QAOA enhancement factor
which is the observed highest probability after applying QAOA
divided by the uniformly random probability of 1/2n, where
n is the number of qubits. The average enhancement across
all cases is 14.43, which means that on average it is 14.43x
more probable to measure the minimizing state compared to a
random state. The worst enhancement factor we observed was
3.79, and the largest was 108.94.

A. Results compared to the classical baseline

The results of solving selected portfolio optimization prob-
lems are presented in Fig. 6, where budget utilization is shown
on the y-axis, and the x-axis shows the min-max normalized
value of the cost function f(z) without the budget constraint.
The best solutions are in the upper right corner and along
the 100% line. One of the findings is that our higher-order
formulation for the portfolio optimization problem is often
theoretically capable of encoding portfolio allocations whose
quality outperforms that of solutions from classical baselines,
as seen in Fig. 6 and in Table II. This result motivates
further study of methods to solve HUBO problems on quantum
hardware. The solutions to the HUBO problems have aimed
to invest the whole budget, and this goal has sometimes come
at the cost of smaller expected returns. Unfortunately, solv-
ing higher-order portfolio optimization problems with QAOA
proved challenging, and only a small subset of problems
matched the quality of the solutions obtained with exact
methods or classical algorithms. This suggests that QAOA
may require modifications to the optimization pipeline before
it can effectively address more complex HUBO optimization
problems.

We suspect that the QAOA’s performance may be limited
by the complex optimization landscape of portfolio problems,
which often have many local minima. The current results
demonstrate that the optimization becomes more challenging
as the number of qubits increases. Fig. 5c shows the eigenvalue
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(a) Gate count and depth comparison for
QUBO and HUBO circuits in QAOA.

(b) Average KL divergence of QUBO and
HUBO allocations compared to uniform.

(c) Eigenvalues for a higher-order portfolio
optimization problem with 6 qubits.

Fig. 5: Comparison of circuit metrics and allocation divergences for QUBO and HUBO settings.

TABLE II: Results of comparing the optimization approaches

Metric Constrained Unconstrained QAOA HUBO
classical classical exact

95% ≤ budget util. ≤ 105% 74 70 19 100
min-max objective ≥ 0.95 70 68 23 53
Intersection of both 50 46 3 53

spectrum for a 6-qubit instance, with several values near the
optimum, suggesting a rugged landscape that makes these
problems challenging for optimization. It will be a future
research topic to improve the methods so that QAOA can
tackle HUBO problems more efficiently.

B. Comparison to mean-variance portfolio optimization

Our implementation [42] enables users to solve the same
portfolio optimization problems using either the mean-variance
formulation, which is a QUBO problem, or the higher-order
formulation, which is an HUBO problem. This subsection
compares the HUBO problem to the corresponding QUBO
problem. This clarifies the effect of including the higher-order
terms and the complexity of the HUBO problem.

The first comparison is between the required gate counts
and depths for each problem, which is presented in Fig. 5a.
We did not perform optimization routines for the circuits, and
the gates used are the standard for QAOA: Hadamard, CNOT,
Rz , and Rx rotations. Both problems demonstrate scalability,
which remains a challenge for current real quantum computing
hardware.

Next, we compare the spectra of each problem by computing
the exact spectra for HUBO and QUBO problems in the
cases between 6 and 13 qubits and calculating the variance of
the differences. This showed that for small qubit counts, the
difference in the spectra between HUBO and QUBO problems
is very small at level 10−9 − 10−11. This reveals that with
the current weights for coskewness and cokurtosis, their effect
on the values of the spectrum is small. The difference in the
spectra becomes more dominant with increasing qubit counts.

Although the spectra for these optimization problems
resemble each other, the allocations start differing substantially
when the number of qubits and complexity increase. We
visualize the difference in the allocations by computing how
much they differ as distributions and how far they are from the

allocation, which would invest an equal amount in every asset.
The results are in Fig. 5b. KL divergence, i.e., relative entropy,
is a standard metric for comparing two distributions. The lower
KL divergence value in the figure indicates that the distribution
is closer to the uniform distribution. The closer the two plots
are, the more similar allocations they provide on average.

The results in Fig. 5b show that when the number of
qubits increases, the difference between QUBO and HUBO
allocations becomes more significant. We can also read that the
HUBO solutions stay closer to the uniform allocation, which
means that this formulation produces more diverse portfolios
compared to the mean-variance problem. We consider portfolio
diversification to be a positive feature.

VI. CONCLUSION

Despite being a complex problem with a strong connection
to real-life data, portfolio optimization has a central role
in quantum optimization. In this article, we introduced a
higher-order portfolio optimization problem and showed how
it can be formulated for quantum computers and solved with
QAOA. We demonstrated its performance against the classical
baselines and showed that the HUBO formulation can encode
better portfolios than the classical solutions. This work also
concretely demonstrated differences between mean-variance
and higher-order portfolio optimization and briefly compared
the most common classical optimizers. While the resource
requirements for solving HUBO problems with QAOA are
likely too demanding for the current hardware, HUBO prob-
lems show characteristics that make them a promising class
of problems to be solved on quantum computers, especially
because the classical solvers do not natively support them.

Future research will include improving QAOA, optimization
strategies, and classical subroutines to work more efficiently
for HUBO problems. We are especially interested in exploring
tensor networks and Bayesian optimizers.
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(a) Portfolio optimization cases with 6 qubits (b) Portfolio optimization cases with 7 qubits

(c) Portfolio optimization cases with 8 qubits (d) Portfolio optimization cases with 13 qubits

(e) Portfolio optimization cases with 14 qubits (f) Portfolio optimization cases with 15 qubits

Fig. 6: Portfolio optimization cases with various qubit counts
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