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Abstract—The traditional approaches for implementing event-
based Demand Response (DR) have been static, and do not
involve feedback to the consumers regardless of their perfor-
mance during the DR event. This may however lead to an
incomplete system-wide response, thereby forcing the utility to
employ direct load control to achieve the required response,
or buy additional generation reserve from the spot market. To
mitigate this inefficiency, this paper proposes closing the loop
through an incentive control for residential DR participants
enabled using event stream monitoring. By realizing the latter in
an adaptive and distributed manner, the data communication
and computation overhead involved in the decision making
process is reduced. With simple assumptions, it is demonstrated
that methods for event stream processing can ensure that the
scheduled DR is achieved completely. Therefore, the proposed
implementation allows for scalable, effective, privacy-preserving,
and robust implementation of incentive-based residential DR that
ensures full overall compliance to the DR task.

Index Terms—adaptive event stream monitoring; demand re-
sponse; incentive-based; smart grid.

I. INTRODUCTION

Residential demand response (DR) is an essential part of a
smart grid, and refers to the actions taken by the consumers to
alter their consumption as requested by the utility. DR imple-
mentations may in general be price-based, event (incentive)-
based, or direct load control (DLC). The first implements a
time-varying tariff in order to shift consumption away from the
peak demand period, whereas the second offers an incentive to
the consumers to reduce their consumption during a specified
event period. The third, as the name suggests, involves the
utility directly controlling the end-user’s loads such as air
conditioning or lighting as required. While price-based DR
is not dispatchable, event-based and DLC responses could be
obtained during an exact interval specified by the utility. These
may therefore be more useful to the grid operator to alleviate
stress on the grid during the peak demand hours. However,
among these, DLC programs have historically experienced low
adoption rates owing to the residents’ reluctance to losing
control of their flexible loads to the utility [1]. Therefore,
incentive-based DR implementations are expected to have a
high penetration in the future distribution grid.

The implementation of event-based DR, especially in the
residential sector, has traditionally been open-loop, as illus-
trated in Fig. 1. The utility generates a DR request that is
communicated to the DR participants. Based on an expected

Participant

time

DR 
Request

DR 
Response

Billing Payment

Utility

Participant

DR Event 
Preparation

DR Event 
Period

DR Event 
Evaluation

Fig. 1. Traditional approach to event-based DR.

response from these consumers, the utility schedules other
resources such as conventional or distributed generation or
storage to achieve the appropriate reserve levels. In this
scenario, no further communication or feedback is sent to
the consumer during the actual DR event period. The success
of the DR event, and the conformance of the consumers is
only assessed in retrospect, after the fact, for billing purposes.
This static approach has drawbacks because it lacks flexibility:
first, in terms of the granularity at which trade-offs (offers
to consumers vs. coping with increased energy consumption)
are managed. There is only one DR request issued for the
whole network, which is moreover before the time frame
in which the savings shall materialize. Second, there is no
flexibility or means for the utility to manage resources if the
overall system-wide response falls short of the expected value,
forcing it to turn to other resources such as the DLC flexibility
provided by the commercial and industrial sector. Clearly, this
is not economically optimal due to the under-utilization of the
residential demand flexibility.

Participant

time

Utility

Participant

Consumption

...

2nd Req. 2nd Res.

...

Consumption

DR Event 1 
Preparation

DR Events 
Evaluation

DR Event 2 
Preparation

DR Event 2 
Period

DR Event 1 Period

Fig. 2. Proposed approach to event-based DR including a feedback loop.

This paper therefore argues for a dynamic approach to
incentive control in an event-based DR implementation, as
outlined in Fig. 2. This has at its core, a feedback loop
from the utility to the consumer that enables the utility to
announce new incentives—a second DR event—to a subset of
the participants within the time frame of the first DR event
as it unfolds. Any dynamic control approach must meet the
following requirements:
• Distributed processing: the computation underlying deci-

sion making needs to be distributed to achieve scalability



to large-scale networks, to ensure consumer privacy, and
to avoid a single-point of failure [2], thereby achieving
fault tolerance in decision making,

• Traceable processing: the decision making shall be
explicit, not hidden in black-box models in order to enable
manual monitoring, and finally

• Online processing: to enable dynamic decision making,
data on the behavior of consumers needs to be processed
immediately, with low-latency.

With these objectives, the contributions of this paper are
summarized as follows. It proposes a model of dynamic
decision making for event-based DR, which ensures that the
full response is obtained from a group of residential consumers.
Also provided is a design of the technical infrastructure that
achieves this by using a feedback from the utility that adjusts the
incentive to a subset of the consumers based on adaptive stream
monitoring of the real time behavior of the entire group. By
distributing the monitoring functionality, communication and
computation costs are reduced to achieve scalability. Results
illustrate that by employing distributed event stream processing,
an order of magnitude of both computation and communication
costs can be reduced.

II. BACKGROUND

This section presents essential concepts regarding residential
DR (Section II-A), as well as the basic notions of event stream
processing (Section II-B).

A. Residential Demand Response

This subsection details the DR implementation (the static
case with no feedback), as well as the simulation procedure
employed in this paper for generating synthetic residential load
profiles with and without DR events.

1) Event-based DR implementation: In event-based im-
plementations, as the name suggests, the response from the
consumer is triggered by an explicit signal from the utility that
specifies the time of the event, the energy reduction requested,
and the incentive for the same response. The following
happen sequentially if a consumer response is required in
the distribution system.

First the utility generates a DR event for a set of participants
(along with their volume of response, and the corresponding
timeframe [tstart , tend ]). The specifications of the DR task are
conveyed to the consumers usually using either a dedicated
communication network, or an internet-based infrastructure.
Second, the consumer respond to the event by either accepting,
or declining the DR request [3]. The consumer responses (viz.
‘I participate!’, or ‘I decline to participate!’) are collected by
the utility, which then estimates the available system flexibility.
Third, during the DR event period, the consumers who accept
the event take steps to change their appliance usage patterns
to meet the DR event specifications. Finally, after the event
ends, the utility estimates the participants’ contributions during
the event, and compensates them for the same. The estimation
of the participants’ response during the event requires the
calculation of the consumer baseline load (see [4] for an

overview). Note that a consumer who participates must provide
the full volume of response to receive the incentive. Given the
event-time real power consumed by a consumer k, Pk ,t , and
the corresponding baseline Bk ,t , this is represented as

tend∑
t=tstart

(Bk ,t − Pk ,t) ≥ Requested reduction. (1)

2) Simulating residential load profiles: The demand profile
for each home is generated using a bottom-up model wherein
the probabilities of usage pt,i of each appliance i are assumed
to be known. These are obtained from time-use surveys such
as [5], the data from which is used in our study. The state of
each appliance xt,i (1 if on, 0 if off) at time t is determined
by generating a random number rand:

xt,i =

{
1, if rand ≤ pt,i.
0, otherwise.

(2)

The product of the state with the appliance’s rating results in the
power consumed by that appliance. This procedure is repeated
for each time step, and appliance, the sum of whose powers
results in the net residential demand. Equation (2) pertains to
the case when no DR event is generated. If, however, DR is
requested by the utility during the time period [tstart , tend ],
the probabilities of using flexible home appliances (washing
machine, dryer, dishwasher) are amended based on the degree
of compliance of each consumer degComp to the DR task:

p∗t,i = pt,i (1− u× degComp),∀t ∈ [tstart , tend ], and (3)

p∗tr,i = ptr,i +

tend∑
t=tstart

(pt,i − p∗t,i). (4)

These equations describe the deferment of the use of the flexible
appliances away from the DR period, to another randomly
chosen time tr in the rescheduling period. This time tr is
chosen with a probability that is proportional to the original
probability of use ptr,i. The parameter u ∈ [0, 1] refers to the
impact of the incentive offered by the utility on the consumer
response. Clearly, the higher the consumer compliance and the
incentive, the higher is the value of degComp, and therefore
the higher is the power reduction during the event period.

B. Event Stream Processing

Our approach to dynamic decision making for demand
response exploits concepts of event stream processing [6].
Events denote ‘occurrences of interest’, which may represent
low-level measurements (e.g., the current energy at a smart
meter) as well as high-level observations (e.g., for a set of
smart meters, the accumulated energy is larger than expected).
In any case, following [7], events are represented by a relational
data model. An event schema is a sequence of attributes
A = 〈A1, . . . An〉, each being of a primitive data type. An
instance e = 〈a1, . . . an〉 of such a schema is an event, with ak
being the value of the respective attribute Ak. As a short-hand,
e.Ak denotes the value ak of attribute Ak of event e.



Attribute: id time houseID power (kW)
Domain: N N text R

11 24234982 ‘H1’ 12.20
12 24235323 ‘H2’ 4.78
23 24236728 ‘H1’ 12.41

As an example, consider events that measure the power of a
house. Such events may be captured as shown above.

An event stream of schema A is an infinite sequence SA =
〈e1, e2, . . .〉 of events of schema A. Here, the stream order
respects the temporal order of events: for events ej and ek,
j < k implies that ej .time ≤ ek.time.

This paper further adopts a query model that lifts relational
queries from static data to the above notion of an event
stream [7]. A standard relational query that is evaluated over
a set of static data elements follows a Select-From-Where

structure that defines which attribute values to consider, from
which data source, satisfying which condition. In addition, such
a query may contain aggregation operators, such as Sum or
Count that are applied over some data elements. If aggregates
shall be derived per set of data elements, a Group By operator
enables the definition of a partitioning based on the values of
some attribute before applying the aggregation operator.

Evaluating such queries over streams requires the definition
of (i) how to select a set of events (i.e., data elements) from
an input stream (i.e., an infinite sequence of data elements),
and (ii) how to construct an output stream from the set of
events obtained after applying the query operators to the events
selected from the input stream. As for the first question, a
time-based window may be applied, defined by a size w and
a slide s. Given a stream SA = 〈e1, e2, . . .〉, a first window
selects all events W1 = {e1, . . . , ek} such that ek.time −
e1.time ≤ w, whereas ek+1.time − e1.time > w. A second
window, in turn, contains events W2 = {em, . . . , en}, such that
em.time− e1.time ≥ s and em−1.time− e1.time < s, while
also em.time− en.time ≤ w and em+1.time− en.time > w.
A sliding, time-based window is illustrated in Fig. 3.
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Fig. 3. Windows of size 5 and slide 4 over an event stream.

Applying the query operators (e.g., selections, aggregations)
to each window yields a sequence of sets of result events. Those
may be ordered again to generate an output event stream.

This query model is illustrated in Fig. 4. This query is applied
to a stream of smart meter readings (SMReadingStream) with
a 2h window and a 1min slide (assuming second granularity).
For each window, the power values after the start of DR event
(DRStartTime) are aggregated (Sum) and added to the last
measurement (Last) to create an event in the output stream.

III. STREAM MONITORING FOR DYNAMIC DR

This section first gives an overview of our approach to
dynamic DR based on event stream monitoring (Section III-A).
It then clarifies how the participants’ compliance during

Select Last(*) As smartMeterEvent,
houseID, Sum(power) As houseAccPower

From SMReadingStream#ext_timed((time%60)==0, 7200)
Where time > DRStartTime
Group By houseID;

Fig. 4. Example monitoring query for a smart meter.

a DR event is assessed (Section III-B), before turning to
distributed, adaptive evaluation of the underlying monitoring
queries (Section III-C).

A. Overview

To realize dynamic DR that is based on a continuous
assessment of the residents’ energy consumption, this paper
relies on event stream monitoring as illustrated in Fig. 5. That
is, following the topology of a network, all DR participants
are divided into groups to enable decentralized prediction of
their compliance while a DR event unfolds. The compliance
predictions on the group level are then used for compliance
prediction at the global level by the utility. Based thereon,
decisions on additional DR events are taken. In case of lossy
connections within or across groups, fault tolerance mechanisms
are employed to guarantee successful events’ transmissions [8].

Utility

Participants:

...

... ...

Groups:

Accumulated 
energy 

Compliance 
prediction

Compliance 
predictionDR requests and 

responses

Fig. 5. Infrastructure for dynamic DR based on event stream monitoring.

Reflecting on the requirements for dynamic DR as outlined
in Section I, the group-based approach to monitoring means
that the approach is inherently distributed. As detailed below,
the accumulation of energy measurements and the compliance
prediction is further grounded in queries over event streams to
meet the requirement of traceable and online processing.

B. Monitoring Queries used for Compliance Prediction

Using the above general setup, compliance to a DR task,
locally by participants, but also globally on the level of the
utility, is assessed as follows. A participant k is predicted at a
time ttest to successfully comply with a DR task if

ttest∑
t=tstart

(Bk ,t − Pk ,t) ≥ λ1, (5)

where λ1 is a threshold energy level, whose selection is case-
specific, and depends on the total energy reduction requested.
This simple compliance test could be made as sophisticated
as the utility requires; for instance, it could use as additional
inputs the accept/reject responses of the individual consumers.
Further, the result of this method could be a probability instead
of a binary comply/non-comply output. Finally, the aggregate
system is said to be compliant if γ1% of the total participants
are compliant according to (5). With the above infrastructure,
compliance may also be assessed at intermediate levels. That



is, a group G of participants is predicted at a time ttest to
successfully comply with the given DR task if∑

k∈G

ttest∑
t=tstart

(Bk ,t − Pk ,t) ≥ λ2. (6)

Again, the overall system is compliant to the DR event if γ2%
of the groups are compliant according to (6). Note that γ1 and
γ2 are system-dependent and chosen by the utility during the
planning phase of the DR program.

The above model is implemented by means of event stream
processing as follows. For each participant, the aforementioned
monitoring query, Fig. 4, is evaluated. It accumulates the power
measurements emitted by a resident’s smart meter after the
start of a DR event per sliding window. The output stream is
referred to as AccSMReadingStream.

Select Count(Distinct houseID) < baselineNum As ’Alert’
From AccSMReadingStream
Where (baseline-houseAccPower)>lambda1
Group By time;

Fig. 6. Query to assess compliance based on individual participants.

Based thereon, the computation of (5) along with the global
assessment of the number of compliant participants is realized
by the query in Fig. 6. For each resident at each time point,
it compares the accumulated power houseAccPower with the
respective accumulated baseline baseline, and counts the
number of compliant residents. If less than baselineNum

(derived from γ1) residents reach compliance, the system is
non-compliant, so that an alert shall be emitted.

Select (groupBaseline-Sum(houseAccPower)) > lambda2 As ’
GroupAlert’

From AccSMReadingStream
Group By time;

Fig. 7. Query to assess compliance per group.

Exploiting the distribution of monitoring at the level of
groups of participants, however, the query shown in Fig. 7
would be used for monitoring. It accumulates power per group
and compares it against the respective baseline, realizing (6).
The number of non-compliant groups is then determined in
the same way as discussed above for individual participants.

C. Distribution and Adaptivity

To achieve scalability of the outlined monitoring solution to
large-scale networks, the distribution induced by structuring
the monitoring around groups of participants is of utmost
importance. In a centralized setting, each resident’s smart meter
sends the accumulated energy to the utility at any point in time,
which yields a global communication cost that is denoted by
CG. The utility would then compute the compliance prediction,
which induces a computation cost Ω(n), with n as the number
of measurement events. By exploiting distributed monitoring,
both communication and computation costs are reduced.

Assume that N residents are divided into g groups, with the
i-th group having |Gi| residents. The local data communication
cost within a group is denoted as CL, where CL < CG.

In centralized monitoring, at a single point in time, the
system-wide one-way communication cost is N × CG and the
computation cost is Ω(N). This yields a monitoring cost of
Cc = N × CG + Ω(N) per time instant.

In a distributed case, however, groups perform local com-
munication and the computation of compliance prediction in
parallel. At any time instance, the system-wide monitoring
cost is Cd =

∑
|Gi| × CL + Ω(max(|Gi|)), where Gi

is a non-compliant group. This monitoring can be adapted
while a DR event unfolds. For a group that is compliant,
local communication and computation of local compliance
predictions are neglected. The idea here is that within a group,
the highly committed residents’ reduction may offset their non-
committed counterparts energy, making the whole group reach
the required compliance level. In addition, once the whole
system is found to be compliant, the measurement rate at each
of the residents’ smart meters is reduced, as the data is now
solely used for billing purposes. In practice, this is realized
by simply increasing the slide of the window of the query
evaluated directly at the smart meter, see Fig. 4. As shown in
the remainder, such adaptations lead to significant reductions
of the overall monitoring cost.

IV. PERFORMANCE EVALUATION

This section presents experimental results to highlight the
effectiveness of dynamic DR as well as the efficiency of its
realization when relying on event stream monitoring.

A. Experimental Setup
Dynamic DR is implemented for a residential distribution

system whose topology is based on the standard IEEE 13
node test feeder [9]. The number of residences at each of the
nodes with spot-loads is calculated by assuming that each home
contributes 5kW on an average to the rating. In this way, 654
residences in total are assumed to be distributed over the various
nodes of this system. As explained in Section II-A, baseline
estimation is essential in determining the DR response of each
participant. However, since this paper relies on simulated load
profiles with and without DR, for ease, the baseline demands
are directly obtained using (2) and (3) with degComp = 0.

B. Effectiveness of Dynamic DR
Assume that the utility wishes to reduce the system peak

demand during the period 7-9PM, by providing an incentive
u = 0.5 to all participants. Further, assume that all consumers
accept the given DR request, and the individual degComp
values are uniformly distributed in [0.7, 0.9]. Implementing
the above simulation procedure in MATLAB, the benefit
of dynamic DR is now illustrated. Say the utility predicts
30 minutes into the DR event that the response would be
unsatisfactory for some previously-determined values of γ1
and γ2. It then generates a second DR request providing an
increased incentive (u = 0.7), which is communicated to half
of the total population (chosen at random).

Fig. 8 shows the system-wide demands for three cases:
(i) the baseline case with no DR; (ii) the traditional open-
loop implementation of a single DR event; and (iii) feedback
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Fig. 8. Impact of feedback on the system-wide demand for a DR event
between 7-9PM (single run of simulation). degComp for the population is
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Fig. 9. Heatmap (averaged over 100 simulation runs) depicting the increased
system-wide energy reduction (kWh) due to the second DR event for varying
times of feedback (in X-axis, hours) and incentive u (in Y-axis).

implemented, with a second DR request sent to 50% of the
population after 30 minutes. The values of degComp for
the residents are assumed not to vary on the receipt of the
second message; only their reaction to the incentive u varies.
This assumption is sufficient for assessing the effectiveness of
dynamic DR; the exact variation in the consumer behavior due
to this incentive could be modeled as detailed as the case may
require, depending on the propensity of each population set to
being swayed by the additional monetary benefit offered.

The system-wide energy reduction (averaged over 100
simulation runs) during the DR event when compared to the
baseline demand is 426.11kWh, when only the first DR request
is sent. However, it increases to 498.27kWh with the second
DR event. Variation in the increased energy reduction for
different times of sending the second request, and the incentive
offered, is shown in Fig. 9. The sooner the second request is
delivered, the higher are the energy savings. Further, a smaller
incentive offered early on into the first DR event could provide
the equivalent response as a higher incentive offered later on,
thereby underscoring the need and benefit of early prediction
of the success of the response to a given DR request.

C. Communication and Computation Efficiency of Event Stream
Monitoring

To test the efficiency of the proposed realization of dynamic
DR using event stream monitoring, a prototype is implemented
based on the Esper [10] engine. Using the above simulation data,
this study considered a topology that divides the 654 residents
into 21 groups. Per group, a baseline with minute granularity
was precomputed from simulation data. The queries of Fig. 4
and Fig. 7 are evaluated per resident and group, respectively.

Centralized monitoring is used as a baseline for comparison;
here, measurements are sent by each smart meter to the utility,
which evaluates the query in Fig. 6 for compliance prediction.

TABLE I
MONITORING COST COMPARISON, CENTRALIZED VS. DISTRIBUTED

7-9PM 8-9PM

Centralized Distributed Centralized Distributed

Communication 78,480×CG 39,953×CL 39,240×CG 713×CL

Computation 78,480×CE 1,553×CE 39,240×CE 591×CE

CG and CL are the abstract units for global communication cost and local communication per event transmission;
CE is the abstract unit for computing predication per event.

Now consider event stream monitoring for the time between
7–9PM with compliance predication taking effect from 8PM.
When a group reaches local compliance, monitoring is adapted
so its data is no longer forwarded to the utility. As part of our
experiments, it was observed that around half of the groups are
compliant in the time period between 8–9PM. Communication
cost is measured by the data volume transmitted in the
network, and computation cost by the number of events used
for compliance prediction, denoted as CE . As explained in
Section III-C, groups compute their predictions in parallel, so
that the maximum cost over all groups at a time instant is
considered when aggregating the costs for a whole DR event.

A comparison of the costs for centralized and distributed
monitoring for the periods 7-9PM and 8-9PM is given in
Table I. Computation cost is reduced by 50× and 66× for the
two periods respectively. Assuming CG = 5× CL, reductions
of communication costs are then 9.8× and 275× respectively.
Clearly, adaptive distributed event stream processing reduces
monitoring costs by at least one order of magnitude.

V. CONCLUSION

This paper illustrated the merits of feedback in an incentive-
based DR implementation. This feedback loop, from the utility
to the participants, has a dynamic incentive structure at its core,
and is employed during the course of a DR event to ensure
compliance of the system to the required level demanded by the
utility. A scalable realization of such a loop has been presented
using distributed, adaptive event stream monitoring.
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