
Load Shedding for Complex Event Processing:
Input-based and State-based Techniques

Bo Zhao
Humboldt-Universität zu Berlin, Germany

bo.zhao@hu-berlin.de

Nguyen Quoc Viet Hung
Griffith University, Australia

quocviethung.nguyen@griffith.edu.au

Matthias Weidlich
Humboldt-Universität zu Berlin, Germany

matthias.weidlich@hu-berlin.de

Abstract—Complex event processing (CEP) systems that evalu-
ate queries over streams of events may face unpredictable input
rates and query selectivities. During short peak times, exhaustive
processing is then no longer reasonable, or even infeasible, and
systems shall resort to best-effort query evaluation and strive
for optimal result quality while staying within a latency bound.
In traditional data stream processing, this is achieved by load
shedding that discards some stream elements without processing
them based on their estimated utility for the query result.

We argue that such input-based load shedding is not always
suitable for CEP queries. It assumes that the utility of each
individual element of a stream can be assessed in isolation.
For CEP queries, however, this utility may be highly dynamic:
Depending on the presence of partial matches, the impact of
discarding a single event can vary drastically. In this work, we
therefore complement input-based load shedding with a state-
based technique that discards partial matches. We introduce
a hybrid model that combines both input-based and state-
based shedding to achieve high result quality under constrained
resources. Our experiments indicate that such hybrid shedding
improves the recall by up to 14× for synthetic data and 11.4×
for real-world data, compared to baseline approaches.

I. INTRODUCTION

Complex event processing (CEP) emerged as a paradigm

for the continuous evaluation of queries over streams of event

data [14]. By detecting patterns of events, it enables real-time

analytics in domains such as finance [39], smart grids [18],

or transportation [5]. Various languages for CEP queries have

been proposed [14], which show subtle semantic differences

and adopt diverse computational models, e.g., automata [2] or

operator trees [30]. Yet, they commonly define queries based

on operators such as sequencing, correlation conditions over

the events’ data, and a time window.

CEP systems strive for low latency query evaluation. How-

ever, if input rates and query selectivity are high, query evalu-

ation quickly becomes a performance bottleneck. The reason

is that query processing is stateful: a CEP system maintains

a set of partial matches per query [2]. Unlike for traditional

selection and aggregation queries over data streams [4], the

state of CEP queries may grow exponentially in the number

of processed events and common evaluation algorithms show

an exponential worst-case runtime complexity [43].

The inherent complexity of CEP imposes challenges espe-

cially in the presence of dynamic workloads. When input rates

and query selectivities are volatile, hard to predict, and change

by orders of magnitude during short peak times, preallocating

sufficient computational resources is no longer reasonable.

Permanent overprovisioning of resources to cope with peak

demands incurs high costs or is even infeasible. At the same

time, scale-out of stream processing infrastructures provides

only limited flexibility. For instance, resharding a stream in

Amazon Kinesis to double the throughput may take up to an

hour if the stream comprises around 100 shards already [3].

Against this background, CEP systems shall employ best-
effort processing, when resource demands peak [24]. Using

resources effectively, the system shall maximize the result

quality of pattern detection, while satisfying a latency bound.

Best-effort stream processing may be achieved by load
shedding [38] that discards some elements of the input

stream. Simple strategies that shed events randomly have

been implemented for many state-of-the-art infrastructures,

e.g., Heron [19], and Kafka [7]. More advanced strategies

discard elements based on their estimated utility for traditional

selection and aggregation queries [21], [38], [41], [33].

Such input-based load shedding is not always suited for

CEP queries, where the utility of a stream element is highly

dependent on the current state of query evaluation. Under

different sets of partial matches, an event may lead to none or

a large number of new matches. Since the number of matches

may be exponential in the number of processed events, an event

may have drastic implications depending on the presence of

certain partial matches. This led to the following observation:

“The CEP load shedding problem is significantly different
and considerably harder than the problems previously studied
in the context of general stream load shedding.”

– Y. He, S. Barman, and J.F. Naughton [24]

This paper argues for a fundamentally new perspective on

load shedding for CEP. Since the state of query evaluation

governs the complexity of query evaluation, we introduce state-
based load shedding that discards partial matches, thereby

maximizing the recall of query processing in overload situations.

Our idea is that state-based shedding offers more fine-granular

control, compared to shedding input events. Yet, input-based

shedding is generally more efficient: A discarded event is

not processed at all, whereas a partial match already incurred

some computational effort. When striving for the right balance

between result quality and efficiency for a given application,

therefore, we need a hybrid approach that combines state-based

and input-based load shedding. To realize this vision, we need

to address several research challenges, as follows:

1093

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00099

1) The utility of a partial match shall be determined for

shedding decisions. This assessment needs to take into

account that a partial match may lead to an exponential

number of matches, in the number of processed events.

2) State-based and input-based load shedding shall be bal-

anced, which requires establishing a relation between

the utilities of input events and partial matches. This is

difficult, as a single event may be incorporated in a large

number of partial matches, or none at all.

3) Utility assessment and balancing of shedding strategies

shall be done efficiently. In overload situations, it is

infeasible to run complex forecasting procedures for

ranking matches and balancing shedding strategies.

In the light of the above research challenges, this paper makes

the following contributions:

◦ We present hybrid load shedding for CEP. It combines

input-based load shedding with a fundamentally new

approach to shed the state of query processing.

◦ We propose a cost model for hybrid load shedding. It

quantifies the utility of partial matches, which is directly

linked to the utility of input events.

◦ Based on this cost model, we develop efficient decision
procedures for hybrid load shedding. We show how the

setting can be formulated as a knapsack problem and how

shedding strategies are based on its solution.

◦ We discuss implementation considerations for hybrid

load shedding considering the cost model granularity, its

estimation and adaptation, and approximation schemes.

We evaluated our approach using synthetic as well as real-world

datasets. In comparison to other shedding strategies, given a

latency bound, our hybrid approach improves the result quality

up to 14× for synthetic data and 11.4× for real-world data.

In the remainder, §II outlines the challenges of load shedding

in CEP. In §III, we formalize the load shedding problem for

CEP, while the foundations of our approach are detailed in

§IV. Practical considerations are discussed in §V. Evaluation

results are given in §VI. We close with a discussion of related

work (§VII) and conclusions (§VIII).

II. BACKGROUND

A. Properties of CEP Applications

For a CEP application, an important stream characteristic

is steadiness of the input rate and the distributions of the

events’ payload data and, hence, query selectivity. If the rate

and distributions are volatile, the size of the state of a CEP

system may fluctuate drastically, which is further amplified by

the potential exponential growth of partial matches.

Moreover, applications differ in the required guarantees for

the latency and quality of pattern detection. While CEP systems

strive for low-latency processing, the precise requirements are

application-specific. How the usefulness of query matches

deteriorate over time varies greatly, and matches may become

completely irrelevant after a certain latency threshold. Yet,

depending on the application, it may be acceptable to miss a few

matches if the latency for the detected matches is much lower.

We illustrate the above properties with example applications:

Urban transportation. Operational management may exploit

movements of buses and shared cars or bikes, as well as

travel requests and bookings by users [5]. Yet, the resulting

streams are unsteady, as, e.g., a large public happening leads to

spikes in event rates and query selectivities (many ride requests

to a single location). Also, the utility of pattern detection

deteriorates quickly over time, whereas the result quality may

be compromised for some queries. For instance, queries to

correlate requests and offers for shared rides must be processed

with sub-second latency to achieve a smooth user experience.

Yet, in overload situations, detecting some matches quickly is

more profitable than detecting all matches too late or investing

into resource overprovisioning.

Example 1: Consider citibike, a bike sharing provider that

published trip data of 146k members [11]. Bikes are rented

through a smartphone app, where users search bikes at nearby

stations, start a ride, and finish trips, again at a station. Since

bikes quickly accumulate in certain areas, the operator moves

around 6k bikes per day among stations. Hence, the detection of

‘hot paths’ of trips promises to improve operational efficiency.

PATTERN SEQ(BikeTrip+ a[], BikeTrip b)
WHERE a[i+1].bike=a[i].bike AND b.end∈{7,8,9}
AND a[last].bike=b.bike AND a[i+1].start=a[i].end
WITHIN 1h

Listing 1: Query to detect ‘hot paths’ of stations.

Listing 1 shows a CEP query to detect such ‘hot paths’, using

the SASE language [2]: Within an hour, a bike is used in several

subsequent trips, ending at particular stations. Here, the Kleene

closure operator detects arbitrary lengths of paths. Evaluating

the query over the citibike dataset [11] reveals a drastic spike in

the number of partial matches maintained by the CEP system,

see Fig. 1. While higher resource demands may eventually be

addressed by scaling out the system, load shedding helps to

keep the system operational in peak situations.

Fraud detection. To detect fraud in financial transactions,

CEP queries identify suspicious patterns (e.g., a card is suddenly

used at various locations). The event streams vary in their input

rates and query selectivities, e.g., due to data breaches being

exploited. While such variations can hardly be anticipated, there

are tight latency bounds for processing: In around 25ms, a credit

card transaction needs to be cleared or flagged as fraud [17].

Also, payment models of companies such as Fraugster [20]

that penalise false positives make it impossible to simply deny

all transactions in sudden overload situations. Hence, a CEP

system shall resort to best-effort processing, detecting as many

fraudulent transactions as possible within the latency bound.

 0

 40000

 80000

 120000

 160000

 200000

 0

 5
0
0
0

 1
0
0
0
0

 1
5
0
0
0

 2
0
0
0
0

 2
5
0
0
0

 3
0
0
0
0

 3
5
0
0
0

 4
0
0
0
0

#
P

M

time points (1min)

PMs

Figure 1: Number of par-

tial matches over time,

when evaluating the CEP

query given in Listing 1.

1094

B. Load Shedding for Data Streams

Load shedding has received attention in the broad field

of stream processing. Random shedding strategies have been

implemented in current streaming systems, such as Heron [19],

and Kafka [7], while shedding may also be guided by queueing

latencies [36], concept drift detection [26], and the expected

quality of service [33]. Turning to techniques that incorporate

the semantics of operators, various strategies have been

presented for relational data stream processing. Aurora [1]

and Borealis [8] include load shedding functionality, which

discards tuples based on their contribution to the query result,

measured by a notion of utility [38]. Similar approaches have

been presented for relational range queries [21] and XML path

queries [41]. Concept-driven [26] monitors the evolution of

statistic of queries and streams, and their drift per time window,

to determine the utility of input tuples. These approaches

require a precise utility estimation per input tuple, whereas for

CEP queries, this utility depends on the processing state.

For joins of data streams, which are also stateful operators,

load shedding may be based on arrival rates and temporal

correlations [25], [22], or value distributions of attributes [23].

Moreover, shedding based on concept-driven detection also

enable tuning of a sampling rate per stream [26]. Still, all these

approaches define cost models solely on the input stream.

The aforementioned techniques are not applicable for CEP,

though [24], as we discuss based on the questions of when to
shed (Q1); what to shed (Q2); and how much to shed (Q3).

Existing techniques answer Q1 by relating input rates of

streams to processing rates of operators, see [38], [21]. This

is infeasible for CEP [24], due to the high volatility of query

selectivity and, therefore, processing rates of a system.

Q2 is commonly approached based on the selectivity of

relational operators and its changes over time [38], [41], [26].

These approaches exploit, though, that the impact of shedding

can be determined rather accurately per stream element. For

CEP queries, this is not the case as the utility is state-dependent.

The decision about the amount of data to shed, Q3, is typi-

cally governed by the difference of input rates and processing

rates [38], [21], [41], [33]. Again, large fluctuations in query

selectivity render such an approach unsuitable for CEP systems.

III. LOAD SHEDDING IN CEP

A. Event Stream and Query Model

An event is an instantaneous, unique, and atomic occur-
rence of interest at a point in time. We adopt a tuple-based

event model, similar to traditional data stream processing [4].

An event schema is a finite sequence of attributes A =
〈A1, . . . , An〉, each being of a primitive data type. An instance

of A is an event e = 〈a1, . . . , an〉 with ai being the value of

attribute Ai. An event e is assigned a timestamp e.t from a

discrete, totally-ordered domain, here defined as N.

A stream S = 〈e1, e2, . . .〉 is an infinite sequence of events.

It is ordered by timestamps, i.e., for any two events ei and ej
of the stream, i < j implies that ei.t ≤ ej .t. The finite prefix

of stream S up to index k is defined as S(..k) = 〈e1, . . . , ek〉.

q0 q1 q2 q4σ1 σ2

¬ σ2

¬ σ1

Example predicates:
σ1: x.type=BikeTrip σ2: σ1 x.bike=q1.bike x.start=q1.end x.time<q1.time+1h
σ3: σ1 x.end {7,8,9} σ4: T1.bike=T4.bike T3.end=T4.start T4.time<T1.time+1h

T1 T2 T3

KSEQ

σ1

+
q3

T4

SEQ

σ1 σ1 σ3

σ4

Figure 2: Illustration of computational models.

Common operators of CEP queries include conjunction,

sequencing, and Kleene closure [14]. Event selection is further

controlled by correlation conditions over the events’ payload

data and a time window. Most systems adopt similar query

languages, but differ in the applied computational models.

For the query of Listing 1, Fig. 2 shows the automata-based

model of SASE+ [2] and the tree-based model of ZStream [30].

In the automaton, state transitions are guarded by the query

predicates, which correlate the current input event (denoted by

x) with events that are part of partial matches (denoted by the

state identifier). For instance, x.bike=q1.bike in predicate

σ2 means that the current event’s bike ID shall be equal to the

bike IDs of events of partial matches in state q1.

In the tree-based model, events are inserted into a hierarchy

of input buffers that are guarded by a predicate. Query

evaluation proceeds from the leaves to the root, filling operator

buffers with event sequences derived from the child buffers.

We largely abstract from the specifics of query languages and

computational models. By Q, we denote a query with τQ being

its time window. Given a stream S = 〈e1, e2, . . .〉, evaluating Q
over S creates complete matches, each being a finite sequence

of events 〈e′1, . . . , e′m〉 of S that preserves the stream order

(for e′i = ek and e′j = el it holds that i < j implies k < l) and

satisfies the time window (e′m.t− e′1.t ≤ τQ).

A CEP system evaluates a query Q over a stream S and emits

complete matches as soon as they materialize. Query evaluation

is incremental and stateful: A stream is processed event by

event and a set of partial matches is maintained. These partial

matches are sequences of events of S that preserve the stream

order and satisfy the query time window. They correspond

to partial runs of an automaton or sequences in the buffers

at non-root nodes in a tree. As the automaton may be non-

deterministic or a tree operator may enumerate all subsequences

of a sequence of events, the number of partial matches may

be exponential in the size of the processed stream prefix.

Let S(..k) be a prefix of stream S. We write P (k) =
{〈e1, . . . , en〉, . . . , 〈e′1, . . . , e′m〉}, for the set of partial matches

in the CEP system after evaluating query Q over S(..k).
Processing of the next stream event, S(k + 1), by the CEP

system corresponds to a function fQ of the following signature:

fQ(S(k + 1), P (k)) �→ P (k + 1), C(k + 1) (1)

The system maps the event S(k + 1) and the current partial

matches P (k) to a new sets of partial matches P (k + 1) and

complete matches C(k + 1). Query evaluation then yields a

stream of sets of complete matches R = 〈C(1), C(2), . . .〉.
Ordering the complete matches per set and constructing a

single event per match, R is transformed into a stream again.

1095

Table I: Overview of notations.

Notation Explanation

e = 〈a1, . . . , an〉 Event
e.t Event timestamp
S = 〈e1, e2, . . .〉 Event stream
S(..k) Event stream prefix at up to the k-th input event
P (k) Partial matches up to the k-th input event
C(k) Complete matches up to the k-th input event
R Output stream of complete matches
μ(k) Query evaluation latency after the k-th input event

θ Latency bound
ρI Input-based shedding function
ρS State-based shedding function

In the remainder, we focus on queries that are monotonic, in

the stream and the partial matches. Let P (k) and P (l) be the set

of partial matches after evaluating query Q over stream prefix

S(..k) and S(..l), k < l. A query is monotonic in the stream, if

the partial matches P (k′) obtained when evaluating Q over an

order preserving projection S′(..k′) derived by removing some

events of S(..k) is a subset of the original ones, P (k′) ⊆ P (k).
A query is monotonic in the partial matches, if the complete

matches C ′(l) obtained when evaluating Q over S(..l) using

only a subset P ′(k) ⊆ P (k) of the partial matches yields a

subset of the original complete matches, C ′(l) ⊆ C(l). Put

differently, for a monotonic query, the removal of input events

may only reduce the set of partial matches and the removal of

partial matches may only reduce the set of complete matches.

CEP queries that include conjunction, sequencing, Kleene

closure, correlation conditions, and time windows are mono-

tonic under an exhaustive event selection policy (e.g., skip-till-
any-match [2]). The same holds true for common aggregations,

such as a query assessing whether the average of attribute

values of a sequence of events is larger than a threshold.

Intuitively, an exhaustive event selection policy leads to all

possible combinations of events and, hence, aggregate values

being represented by partial matches derived from the original

stream. Therefore, removing an input event or a partial match

can only lead to missing complete matches, but will never

create further partial or complete matches. Counter-examples

for monotonicity are queries with more selective policies, e.g.,

those that require strict contiguity [2] of events, and negation

operators. Note though that exhaustive policies represent the

most challenging scenario from a computational point of view,

so that load shedding is particularly important.

Query evaluation incurs a latency—the time between the

arrival of the last event of a complete match and the actual

detection. In our model, this corresponds to the time needed to

evaluate function fQ. We denote the latency observed for the

complete matches C(k) by μ(k). In practice, however, latency

is assessed for a fixed-size interval, e.g., as a sliding average

over 1,000 measurements. To keep the notation concise, we

assume that such smoothing is incorporated in μ(k). Table I

summarises our notations.

B. The Load Shedding Problem in CEP

To realize load shedding in a CEP system, we revisit the

three questions raised in §II-B: when to conduct load shedding

(Q1), and what (Q2) and how much (Q3) data to shed.

The latency of query evaluation, μ(k), is subject to

application-specific requirements (§II-A). We thus consider

a model in which load shedding is triggered when the latency

μ(k) exceeds a bound θ (Q1). In practice, the effect of load

shedding may materialize only with a minor delay, so that the

bound θ shall be chosen slightly smaller than the bound that

renders matches irrelevant in the application domain.

Solutions for the decisions of what and how much to shed

(Q2 and Q3) have to consider the quality of query evaluation.

We assess this quality as the loss in complete matches induced

by shedding. Let R = 〈C(1), . . . , C(k)〉 be the results (sets of

complete matches) obtained when processing a stream prefix

S(..k), and let R′ = 〈C ′(1), . . . , C ′(k)〉 be the results obtained

when processing the same prefix, but with load shedding. For

monotonic queries, it holds that C ′(i) ⊆ C(i), 1 ≤ i ≤ k,

so that δ(k) =
∑

1≤i≤k |C(i) \ C ′(i)| is the recall loss, the

total number of complete matches lost due to shedding. Any

shedding decision (what and how much) shall therefore aim at

minimizing this loss in recall.

Problem 1: The problem of load shedding in CEP is to

ensure that when evaluating a CEP query for a stream prefix

S(..k), it holds that μ(k) ≤ θ for 1 ≤ k and δ(k) is minimal.

C. Hybrid Shedding Approach

To address the load shedding problem, we propose a

fundamentally new perspective on how to decide on what (Q2)

and how much (Q3) data to shed. We introduce hybrid load

shedding that discards both, input events and partial matches.

Taking up our formalization of query evaluation as a function

fQ that is applied to the next stream event and the current

partial matches, i.e., fQ(S(k+1), P (k)), we distinguish input-
based shedding and state-based shedding, formalised by two

functions ρI and ρS :

ρI(e) �→
{
e

⊥ and ρS(P) �→ P ′, s.t. P ′ ⊆ P. (2)

That is, ρI filters a single event and potentially discards it

(denoted by ⊥), whereas ρS filters a set of partial matches, po-

tentially discarding a subset of them. Based thereon, processing

of a stream event S(k+1) is represented in our formal model

as the application of the evaluation function fQ to the results

of load shedding, i.e., fQ(ρI(S(k + 1)), ρS(P (k))). Here, we

assume that fQ(⊥, ρS(P (k + 1))) �→ ρS(P (k + 1)), ∅, i.e.,

shedding an input event does not change the maintained partial

matches, nor does it generate complete matches.

Fig. 3 links the two shedding strategies to the aforementioned

computational models for CEP.

1 2Input-based Shedding State-based Shedding

q0 q1 q2 q4

KSEQ

T1 T2 T3q3
T4

SEQ

1

1 1 1 1
2 2 2

22 2 2

2

Input Stream

Input
Stream Output

Stream

Output
Stream

Figure 3: Input-based vs. state-based shedding.

1096

IV. FOUNDATIONS OF HYBRID SHEDDING

The above approach for hybrid load shedding calls for

an instantiation of the input-based and state-based shedding

functions. This requires determining the amount of data to shed

to ensure that the latency bound is satisfied as well as assessing

the utility of input events and partial matches to minimize the

loss in recall. To this end, we first introduce a cost model.

A. Cost Model

Input-based and state-based techniques for load shedding

differ in the granularity with which the recall and computational

effort of query evaluation are affected. Input-based shedding

offers coarse-granular control, since a discarded event cannot

be part of any match. It yields comparatively large savings of

computational resources (preventing an exponential number of

partial matches), while it may also have a large negative impact

on the recall of query evaluation (an exponential number of

complete matches may be lost). State-based shedding offers

relatively fine-granular control, as the events of a discarded

match may remain part of other partial matches. Consequently,

the induced computational savings and recall loss are also

comparatively small.

The above difference in shedding granularity is important

to handle different levels of variance in query selectivity. With

small variance, the utility of an input event can be assessed

precisely and input-based shedding is preferred: It avoids

spending any computational resources for processing events

with low utility. For a query with a large variance in selectivity,

however, an assessment of the utility per event is inherently

imprecise, so that resorting to state-based shedding promises

higher recall at the expense of smaller resource savings.

To reason on the impact of shedding strategies on the quality

of query evaluation and the imposed computational effort, we

define a cost model. Striving for a fine-granular assessment,

this model is grounded in partial matches. However, it later

also serves the selection of input events for shedding.

Consider the moment in time after a stream prefix S(..k)
has been processed. At this moment, we assess a partial match

along the following dimensions:

Contribution: We assess the contribution of a partial match

to the query result, i.e., to the construction of complete matches.

It is defined by the number of complete matches that are

generated by it. With C(k + 1), C(k + 2), . . . as the complete

matches derived in the future, the contribution of a partial

match p = 〈e1, . . . , en〉 ∈ P (k) is defined as:

Γ+(p) =
∣
∣{〈e′1, ..., e′m〉 ∈ C(i) | i > k ∧ ∀1 ≤ j ≤ n : e′j = ej

}∣∣ . (3)

Consumption: We assess the consumption of computational

resources induced by a partial match by considering all partial

matches that are derived from it. Unlike for the contribution

defined above, we capture the resource consumption explicitly

instead of abstracting it by the count of derived matches. The

rationale behind is that the resource consumption may vary

greatly between partial matches. For instance, the number and

complexity of predicates that need to be evaluated for a partial

match per input event may differ drastically.

We capture the resource cost of a partial match p by a

function Ω(p) �→ c, where c ∈ N. The exact value may be

defined as the number of query predicates to evaluate for p (to

capture runtime costs) or as its length (to capture the memory

footprint). With P (k + 1), P (k + 2), . . . as the sets of partial

matches constructed in the future, the consumption of a partial

match p = 〈e1, . . . , en〉 ∈ P (k) is defined as:

Γ−(p) =
∑

〈e′1,...,e′m〉∈ ⋃
i>k P (i)

∀ 1≤j≤n: e′j=ej

Ω(〈e′1, . . . , e′m〉). (4)

Contribution and consumption are well-defined, since complete

and partial matches obey the time window of a query (see

§III-A). This limits the number of matches that can be generated

by a single partial match. However, the contribution and

consumption of a partial match can only be calculated in

retrospect. We therefore later discuss how to construct effective

estimators for these measures.

B. Shedding Set Selection

Once the contribution and consumption is known or esti-

mated for partial matches, load shedding based on the following

idea. The severity of the violation of the latency bound for

query evaluation shall govern the severity of load shedding:

The more the bound is violated, the higher the relative share

of data that is shed. Specifically, we consider the extent of

latency violation as a lower bound for the extent of resource

consumption that shall be saved by discarding partial matches.

Consider the situation that shedding has been triggered after

a stream prefix S(..k) had been processed. Then, the relative

extent of the latency violation is given as (μ(k) − θ)/μ(k).
Let P (k) be the set of current partial matches. For each of

them, we assess its relative amount of consumed computational

resources among all partial matches:

Δ−(p, P (k)) =
∣∣Γ−(p)

∣∣/ ∑
p′∈P (k)

∣∣Γ−(p′)
∣∣. (5)

Taking the relative extent of latency violation as a lower bound

for the relative amount of resource consumption to save, we

control the amount of data to shed. That is, we select a subset

of partial matches D ⊆ P (k), called a shedding set, such that:

∑
p∈D

Δ−(p, P (k)) >
μ(k)− θ

μ(k)
. (6)

While the above formulation provides guidance on the partial

matches to consider, shedding shall aim at minimizing the loss

in recall of query evaluation (see §III-B). This loss is defined

in terms of complete matches missed due to shedding, which

links it with our above notion of contribution of a partial match.

We therefore assess the relative potential of a partial match

p ∈ P (k) to avoid any loss in recall:

Δ+(p, P (k)) =
∣∣Γ+(p)

∣∣/ ∑
p′∈P (k)

∣∣Γ+(p′)
∣∣. (7)

1097

Based thereon, we phrase the selection of a shedding set from

the set of partial matches as an optimization problem to guide

the decisions on what and how much data to shed:

select D ⊆ P (k) that minimizes
∑
p∈D

Δ+(p, P (k))

subject to
∑
p∈D

Δ−(p, P (k)) >
μ(k)− θ

μ(k)
.

(8)

The above problem is a variation of a knapsack problem [27].

Its capacity is defined by the extent of latency violation, which

varies among different moments in which load shedding is

triggered. Hence, the problem needs to be solved in an online

manner. To avoid the respective overheads, we later show how

to obtain an approximated solution.

C. Shedding Functions
When load shedding is triggered, a shedding set is computed

as detailed above. It is then used to define different shedding

strategies by instantiating the functions ρI and ρS introduced

in §III-C for input-based and state-based shedding.
State-based shedding is achieved by not discarding input

events and removing all partial matches of the shedding set from

the CEP system. Then, ρI is the identity function, while ρS is

defined as ρS(P (k)) �→ P (k)\D. For practical considerations,

state-based shedding may not be triggered again immediately,

i.e., by the latency μ(k + 1) being above the threshold, but

only after some delay j ∈ N, i.e., by μ(k+ j) the earliest. The

intuition is that the effects of shedding first need to materialize,

before it is assessed whether further shedding is needed.
Input-based shedding is achieved by not discarding partial

matches (ρS is the identity function), but deriving the filter

ρI for input events from the partial matches in the shedding

set. Intuitively, the partial matches that are most suitable for

load shedding are exploited to derive the conditions based on

which input events shall be discarded. Recall that events have

a schema, A = 〈A1, . . . , An〉, so that each event is an instance

e = 〈a1, . . . , an〉 of this schema (see §III-A). Given the set of

events that are part of matches in the shedding set, defined

as ED = {e | ∃ 〈e′1, . . . , e′m〉 ∈ D, 1 ≤ i ≤ m : e′i = e}, the

input-based shedding function is defined as:

ρI(e) �→
{
e if e /∈ ED,

⊥ otherwise.
(9)

Input-based shedding by ρI applies to the single input event

S(k + 1) that is to be handled next, after processing the

prefix S(..k). Hence, unlike for state-based shedding, to have

any effect, input-based shedding needs to be applied for a

certain interval. The length of this interval is determined by the

latencies μ(k + 1), μ(k + 2), . . . observed after load shedding

was triggered. Once the latency bound is satisfied, μ(k+j) ≤ θ
for some j ∈ N, input-based shedding is stopped.

Hybrid shedding combines the two above strategies. The

shedding set D is used to define function ρS to remove partial

matches and also serves as the basis for function ρI for input-

based shedding. Again, the latter function is applied for some

interval based on the observed latencies.

A major advantage of hybrid shedding is that it does

not require explicit balancing of input-based and state-based

shedding, e.g., by a fixed weighting scheme. Since both

strategies are grounded in the same cost model, balancing is

achieved directly by the unified assessment of the consumption

and contribution of partial matches and, thus, input events.

V. IMPLEMENTING HYBRID SHEDDING

This section reviews aspects to consider when implementing

our model for hybrid load shedding.

A. Granularity of the Cost Model

Our cost model for partial matches (§IV-A) is very fine-

granular to enable precise shedding decisions. Yet, considering

each partial match at any point in time leads to large computa-

tional overhead: The selection of shedding sets (§IV-B) is then

based on a knapsack problem with many items, while input-

based shedding (§IV-C) becomes costly, due to a potentially

complex derivation of input events. We therefore tune the

granularity of the cost model through temporal and data

abstractions, striving for a balance between the precision of

the cost estimation and the computational overhead.

Temporal abstractions: Even though contribution and

consumption of matches may change when a single event is

processed, there are typically only a few important change

points over the lifespan of a partial match. Since exact

measurements are not needed for shedding decisions, we

employ the temporal abstraction of time slices. The query

window, which determines the maximal time-to-live of a partial

match, is split into a fixed number of intervals. The cost model

is then instantiated per time slice, rather than per time point.

Data abstractions: Partial matches that overlap in their

events or the events’ attribute values are likely to show similar

contribution and consumption values. We therefore lift the

cost model to classes of partial matches, where each class is

characterized by a predicate over the attribute values of the

respective events. For instance, in Example 1, partial matches

for which the last event denotes a trip ending at stations 3-6 may

have similar consumption and contribution values. Assessing

costs per class, shedding sets (§IV-B) and shedding functions

(§IV-C) are also realized per class. If a class is part of the

shedding set, e.g., the function for input-based shedding uses

the predicate of the class to decide whether to discard an event.

B. Estimating the Cost Model

To take shedding decisions based on our model, we need to

estimate the contribution and consumption of partial matches.

Offline estimation: We evaluate a query over historic

data and record partial and complete matches to derive the

contribution and consumption of each match. For each partial

match, its contribution value is computed by checking how

many times its payload was incorporated among complete

matches, in the relevant slice of a time window. Its consumption

value is computed similarly, by checking against both partial

and complete matches.

1098

For each state of the evaluation model (defined by an NFA-

state or a buffer in an operator tree), the partial matches are then

clustered based on their contribution and consumption values

per time slice. Here, clustering algorithms that work with a

fixed number of clusters (e.g., K-means) enable direct control of

the granularity of the employed data abstraction: Each cluster

induces one class for the definition of the cost model. We

employ the gap statistic technique [40] to estimate an optimal

number of clusters. The contribution and consumption per class

are computed as the 90th percentiles of the values among the

partial matches in the cluster. We keep a data structure that

maps the cluster labels to these values.

To use the class estimates in online processing, we need an

efficient mechanism to classify a partial match immediately

after its creation. We therefore train a classifier for the partial

matches of the clusters obtained for each of the states of the

computational model, i.e., one classifier per state. The classifier

uses the attributes of partial matches that appear in the query

predicates as predictor variables. The choice of the classification

algorithm is of minor importance, assuming that the classifier

can be evaluated efficiently. In this paper, we employ balanced

decision trees, setting the maximal depths to the number of

clusters for the respective state.

Online adaptation: An instantiation of the cost model based

on online clustering and classification is infeasible. However,

the estimates per class and time slice may be monitored

and adapted. Initially, we start with the classifiers obtained

through offline estimation and the mapping of cluster labels to

contribution and consumption values. Once a partial match is

generated, it is classified using the classifier of the respective

state. As a consequence, partial matches are maintained in

different classes. However, the contribution and consumption

values may change as more events are processed. Therefore,

we monitor updates to these values by streaming counts: We

maintain the contribution and consumption per class via a

lookup table for each state. Upon the creation of a match, the

counts for the class and time slice of the originating partial

matches are incremented in the lookup table (consumption

values). If the new match is a complete match, the counts for

contribution values are also incremented. At the end of each

time slice, the new contribution value of a class is calculated as

Γ+
new = (1− w)Γ+

old + wΓ+
incremented. Here, w is the weight

of incremented contribution and large values increase the pace

of value updating (we set w = 0.5). Consumption values are

updated following the same procedure. This way, adaptation is

based on sketches for efficient streaming counts [13].

C. Approximated Shedding Sets

Selecting a shedding set (§IV-B) requires solving a knapsack

problem, which is NP-hard [27]. We found that for a model with

tens of classes, computation of shedding sets using dynamic

programming [32] takes a few nanoseconds, which is feasible

for online processing in overload situations.

If the number of classes is large, approximations shall be

applied. For repeated load shedding, shedding sets may be

reused, assuming stable contribution and consumption values

Table II: Details on the generated datasets.

Attribute Value Distribution

D
S

1 Type U({A,B,C,D})
ID U(1, 10)
V U(1, 10) (or controlled)

D
S

2

Type U({A,B,C,D})
ID U(1, 10)
A.x, A.y, B.x, B.y P (0 < X ≤ 2) = 33%, P (2 < X ≤ 4) = 67%
B.v P (X = 2) = 33%, P (X = 5) = 67%
C.v P (X = 3) = 33%, P (X = 5) = 67%
D.v P (X = 5) = 33%, P (X = 2) = 67%

per class and time slice. Also, the knapsack problem may be

approximated, see also [10]. A simple greedy strategy is to

select classes of partial matches in the order of their contribution

and consumption ratios, until the capacity bound is reached.

VI. EXPERIMENTAL EVALUATION

Below, we first give details on the setup of our evaluation

(§VI-A), before turning to the following evaluation questions:

◦ What are the overall effectiveness and efficiency (§VI-B)?

◦ How good is the selection of data to shed (§VI-C)?

◦ How sensitive is the approach to query properties, such as

its selectivity, duration, and pattern length (§VI-D)?

◦ What is the impact of cost model properties (§VI-E)?

◦ Does the model adapt to changes in the stream (§VI-F)?

◦ What is the impact of cost model estimation (§VI-G)?

◦ How are non-monotonic queries handled (§VI-H)?

◦ How does hybrid load shedding perform for the data of

real-world cases (§VI-I and §VI-J)?

A. Experimental Setup

Datasets and queries: For controlled experiments, we

generated three datasets as detailed in Table II. Dataset DS1

comprises events with a three-valued, uniformly distributed

payload: A categorical type, a numeric ID, and a numeric

attribute V . This dataset enables us to evaluate common queries

that test for sequences of events of particular types that are

correlated by an ID, whereas further conditions may be defined

for attribute V . To explore the impact of diverse resource costs

of matches (see §IV-A), we generated a second dataset, DS2.

The events’ payload includes numeric attributes for which

values are drawn from partially overlapping ranges.

We execute queries Q1, Q2, and Q4 of Listing 2 over dataset

DS1, and query Q3 over dataset DS2. The definition of these

queries is motivated by the above evaluation questions. Note

that Q1-Q3 are monotonic, whereas Q4 is not (see §III-A). The

queries will be explained further in the respective subsections.

We further use the real-world dataset of citibike [11], see

Example 1. For the trip data of October 2018, we test the

query of Listing 1 that checks for ‘hot paths’. We configure

the query to consider paths of at least five stations, i.e., five is

the minimal length of the Kleene closure operator in the query.

As a second real-world dataset, we use the Google Cluster-

Usage Traces [35]. The dataset contains events that indicate

the lifecycle (e.g., submit (Su), schedule (Sc), evict (Ev), and

fail (Fa)) of tasks running in the cluster. We use the query

in Listing 3, which detects the following pattern: A task is

1099

submitted, scheduled, and evicted on one machine; later it is

rescheduled and evicted on another machine; and finally it is

rescheduled on a third machine, but fails execution; within 1h.

Shedding strategies: We compare against several baseline

shedding strategies derived from related work:

Random input shedding (RI) discards input events randomly,

as implemented, e.g., for Apache Kafka [7].

Selectivity-based input shedding (SI) discards input events by

assessing the query selectivity per event type, which

corresponds to semantic load shedding as developed for

traditional data stream processing with Borealis [8].

Random state shedding (RS) discards partial matches in a

purely random manner.

Selectivity-based state shedding (SS) discards partial matches

based on the query selectivity for the events in the match,

which is inspired by techniques for approximate CEP [29].

For our approach, we test three instantiations of the shedding

functions (see §IV-C): Input-based shedding (HyI), state-based
shedding (HyS), and hybrid shedding (Hybrid).

We estimate the cost models for 4 time slices and 10 clusters

(using K-Means) for each state of queries Q1, Q2, Q4, while

4 clusters per state are derived for query Q3. The number of

clusters was used as a maximum depths for the decision tree

classifiers learned for each state.

For the citibike scenario, we considered 3 time slices, while

the number of clusters in K-Means and the maximal tree

depth of the classifiers were set to 15. Turning to the cluster

monitoring application, we also relied on 3 time slices. The

number of clusters and the maximal tree depth were set to 30.

Measures: We measure the performance of query evaluation

under a strict latency bound. In our experiments, this bound

is typically defined as a percentage of the latency observed

without load shedding. Enforcing the latency bound, we

measure the effect of shedding on the result quality and the

throughput of the CEP system. Result quality is mostly assessed

in terms of recall, i.e., the ratio of complete matches obtained

with shedding within the latency bound, and all complete

matches, derived without shedding. For monotonic queries, false

positives may not occur, so that precision is not compromised.

For the non-monotonic query Q4, we also measure precision,

though. Throughput is measured in events per second (events/s).

Implementation and environment: We developed an

automata-based CEP engine in C++.1 Following common

practice, we rely on indexes over the attribute values of events

for efficient evaluation of query predicates. In the same vein,

access to matches in the construction of shedding sets is

supported by indexes based on the predicates that define the

classes of the cost model. The offline estimation of the cost

model was parallelized for different sets of partial matches.

To reduce the overhead during online adaptation, we further

derived lookup tables from the learned classifiers.

Most experiments ran on a workstation with an i7-4790

CPU, 8GB RAM, with Ubuntu 16.04. Cost model estimation

took between 0.75 and 4.5 seconds on this machine, which we

1Publicly available at https://github.com/zbjob/AthenaCEP

Q1: PATTERN SEQ(A a,B b,C c)
WHERE a.ID=b.ID AND a.ID=c.ID AND a.V+b.V=c.V
WITHIN 8ms

Q2: PATTERN SEQ(A a,A+ b[],B c,C d)
WHERE a.ID=b[i].ID AND a.ID=c.ID AND a.ID=c.ID
AND b[i].V=a.V AND a.V+c.V=d.V
WITHIN 1ms

Q3: PATTERN SEQ(A a,B b,C c,D d)
WHERE a.ID=b.ID AND a.x≥ b.v

2
AND a.x≤b.v

AND a.y≥ b.v
2

AND a.y≤b.v AND b.ID=C.ID
AND c.ID=d.ID AND b.v=d.v AND
AVG(sqrt((a.x)2+(a.y)2)+sqrt((b.x)2+(b.y)2))<c.v
WITHIN 5ms

Q4: PATTERN SEQ(A a, NEG B b,C c)
WHERE a.ID=b.ID AND a.ID=c.ID
WITHIN 1ms

Listing 2: Queries for experiments with synthetic data.

PATTERN SEQ(Su a,Sc b,Ev c,Sc d,Ev e,Sc f,Fa g)
WHERE [task_id] AND b.machine=c.machine
AND b.machine!=d.machine AND d.machine=e.machine
AND d.machine!=f.machine AND f.machine=g.machine
WITHIN 1h

Listing 3: Query for Google cluster dataset.

consider feasible for offline bootstrapping. The results of §VI-J

were obtained on a NUMA node with 4 Intel Xeon E7-4880

CPUs (60 cores) and 1TB RAM, running openSUSE 15.0.

B. Overall Effectiveness and Efficiency

We test the general performance of hybrid load shedding with

query Q1 over dataset DS1, drawing attribute V for events of

type C from a uniform distribution U(2, 10). Hence, all events

of types A and B may be part of complete matches, but partial

matches with a.V + b.V > 10 will never lead to a complete

match and can thus be discarded without compromising recall.

We test the baseline approaches against our hybrid strategy.

Without load shedding, the average latency is 1,033μs, so

that we consider bounds between 100μs and 900μs. Fig. 4a

shows that hybrid load shedding yields the highest recall. With

tighter latency bounds, recall quickly degrades with the baseline

strategies, whereas our approach keeps 100% recall for a 900μs

- 500μs latency bound. This highlights that our approach is

able to assess the utility of partial matches and input events.

State-based strategies yield generally better recall (fine-

granular shedding), whereas input-based techniques yield higher

throughput (immediate saving of resources), see Fig. 4b. Our

hybrid approach is nearly as efficient as the input-based

strategies, which is remarkable, given the above recall results.

The reason becomes clear when exploring the ratios of

shed events and partial matches, Fig. 4c and Fig. 4d. Up to

a bound of 500μs, our hybrid strategy discards a steady ratio

of input events. The required reduction of latency is achieved

by an increasing ratio of shed partial matches, which does not

compromise recall (Fig. 4a). Once more input events need to

be shed to satisfy the latency bound, the ratio of discarded

partial matches flattens. Input-shedding thwarts the generation

of partial matches, thereby reducing the shedding pressure.

A repetition of the experiments with the bound being the

95th percentile latency confirmed the above trends.

1100

 0
 20
 40
 60
 80

 100

9 7 5 3 1

R
ec

al
l (

%
)

Latency Bound (×100 μs)

RI
RS

SI
SS

Hybrid

(a) Recall.

 0×100 1×104 2×104 3×104 4×104 5×104 6×104 7×104 8×104 9×104

 1 3 5 7 9T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Latency Bound (×100 μs)

RI
SI

RS
SS

Hybrid

(b) Throughput.

10

20

30

40

50

 1 3 5 7 9R
at

io
 o

f
S

h
ed

 E
ve

n
ts

 (
%

)

Latency Bound (×100 μs)

RI
SI

Hybrid

(c) Ratio of Shed events.

0
10
20
30
40
50
60
70

 1 3 5 7 9R
at

io
 o

f
S

h
ed

 P
M

s
(%

)

Latency Bound (×100 μs)

RS
SS

Hybrid

(d) Ratio of Shed PMs.

Figure 4: Experiments when varying the bound enforced for the average latency.

0.0×100
5.0×104
1.0×105
1.5×105
2.0×105
2.5×105
3.0×105

 1 3 5 7 9
0.0×100
2.0×106
4.0×106
6.0×106
8.0×106
1.0×107

N
u

m
b

er
 o

f
S

h
ed

 E
ve

n
ts

N
u

m
b

er
 o

f
S

h
ed

 P
M

s

Latency Bound (×100 μs)

#event #PM

(a) Avg latency bound.

0.0×100
5.0×104
1.0×105
1.5×105
2.0×105
2.5×105
3.0×105

 1 3 5 7 9
0.0×100
2.0×106
4.0×106
6.0×106
8.0×106
1.0×107
1.2×107

N
u

m
b

er
 o

f
S

h
ed

 E
ve

n
ts

N
u

m
b

er
 o

f
S

h
ed

 P
M

s
Latency Bound (×100 μs)

#event #PM

(b) 95th percent. lat. bound.

Figure 5: Details on workings of hybrid load shedding.

The above results illustrate that state-based shedding, in

general, leads to higher recall. However, throughput is increased

more through input-based shedding, since it completely avoids

to spend effort on the creation of (potentially irrelevant) partial

matches. Hybrid load shedding strives for both, high recall

and high throughput, by balancing input-based and state-based

shedding. Fig. 5a shows that there is a turning point at the

aforementioned latency bound of 500μs, at which the number

of shed partial matches decreases and the number of shed

input events increases. This behaviour is explained as follows.

For tighter bounds, the filter function for input-based shedding

(§IV-C) derived from the shedding set (§IV-B) contains more

heterogeneous partial matches (i.e., from a larger number of

classes and time slices), which increases selectivity of the filter

function, while filtering is also applied for longer intervals

(until the latency drops below the threshold). Since more input

events are filtered, less partial matches are created in the first

place, so that the absolute number of shed partial matches also

decreases. The result is mirrored for the 95th percentile latency

in Fig. 5b, with a turning point at a bound of 700μs.

C. Selection of Data to Shed

For dataset DS1 and query Q1, we assess how well input

events or partial matches that do not incur a loss in recall

are selected. Fixing the ratio of shed events and matches,

Fig. 6a and Fig. 6b show that input-based shedding using

our cost model (HyI) yields better recall with slightly worse

throughput compared to random (RI) and selectivity-based

(SI) input shedding. Hence, our cost model enables a precise

assessment of the utility of matches and, thus, events to shed.

Fig. 6c shows the recall for state-based strategies. Our

approach (HyS) shows better recall than random (RS) or

selectivity-based strategies (SS). When discarding 50% of the

partial matches, our approach keeps 100% recall, whereas the

baseline strategies drop to 30%. Interestingly, at that point,

all approaches show similar throughput (Fig. 6d). With high

shedding ratios, the baselines achieve higher throughput. Yet,

this is of little practical value, given the very low recall.

D. Sensitivity to Query Properties

Variance of query selectivity: To test the impact of the

variance of query selectivity (Q1 over DS1), we change the

distribution of attribute V for C events in [2, x] with x ∈ [2, 10].
This way, we control the overlap of the distributions for A and

B events that lead to complete matches. With a 50% bound

on the 95th percentile latency, Fig. 7a shows that, as expected,

the recall is not affected and hybrid shedding leads to the best

results. Fig. 7b, in turn, shows a major impact on throughput.

If selectivity shows low variance (x = 2), our hybrid approach

is able to precisely assess the utility of input events and discard

irrelevant ones. Hence, the throughput is 120× higher than the

baseline approaches. For high variance, our approach resorts

to the more fine-granular level of partial matches, so that the

throughput resembles the one of the baseline strategies.

Time window size: Under a steady input rate, the size of a

query time window affects the growth of partial matches. We

evaluate this effect by varying the window of query Q1 over

dataset DS1 from 1ms to 16ms, with a 50% bound on the 95th

percentile latency. Fig. 8a shows that our strategy consistently

yields the highest recall, while with increasing window size,

recall improves for all approaches. This may be attributed to

a more precise cost model. Since the number of time slices

(§V-A) is kept constant, larger windows mean that more partial

and complete matches are used for the estimation. According

to Fig. 8b, input-based baseline strategies achieve the best

throughput. Our hybrid approach has comparable performance

to the state-based strategies. With increasing window size, the

differences become marginal due to the exponential growth of

the number of partial matches and their increased lifespan.

Pattern length: Using query Q2 over dataset DS1 and a

bound for the 95th percentile latency (50%), we vary the limit

of the Kleene closure operator to obtain patterns of length four

to eight. As shown in Fig. 9a and Fig. 9b, recall remains stable

with increasing pattern length, whereas throughput decreases

drastically. Interestingly, our approach shows a less severe

reduction than the other strategies. Hence, complex queries

may particularly benefit from our approach.

1101

0
20
40
60
80

100

10 30 50 70 90

R
ec

al
l (

%
)

Shedding Ratio (%)

RI SI HyI

(a) Recall (input-based).

0.0×100
2.0×105
4.0×105
6.0×105
8.0×105
1.0×106
1.2×106

 10 30 50 70 90T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Shedding Ratio (%)

RI
SI

HyI

(b) Throughput (input-based).

0
20
40
60
80

100

10 30 50 70 90

R
ec

al
l (

%
)

Shedding Ratio (%)

RS SS HyS

(c) Recall (state-based).

0.0×100
3.0×104
6.0×104
9.0×104
1.2×105
1.5×105
1.8×105

 10 30 50 70 90T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Shedding Ratio (%)

RS
SS

HyS

(d) Throughput (state-based).

Figure 6: Evaluation of the effectiveness of the selection of data to shed.

0
20
40
60
80

100

2 4 6 8 10

R
ec

al
l (

%
)

Variance Control (C.V)

RI
RS

SI
SS

Hybrid

(a) Recall.

0.0×100
2.0×104
4.0×104
6.0×104
8.0×104
1.0×105
1.2×105
1.4×105

 2 4 6 8 10T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Variance Control (C.V)

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 7: Impact of variance of query selectivity.

0
20
40
60
80

100

1 2 4 8 16

R
ec

al
l (

%
)

Time Window Size (ms)

RI
RS

SI
SS

Hybrid

(a) Recall.

0.0×100

1.0×105

2.0×105

3.0×105

4.0×105

5.0×105

 1 2 4 8 16T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Time Window Size (ms)

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 8: Impact of time window size.

E. Impact of Cost Model Properties

Temporal granularity: We evaluate query Q1 (time window

2ms) over dataset DS1 with a 20% bound on the 95th percentile

latency, varying the number of time slices. Fig. 10a depicts

the obtained recall, where our hybrid approach is annotated

with the number of time slices (TS). While our approach

outperforms all baseline strategies, we see evidence for the

benefit of using time slices: The highest recall is obtained

with ≥4 slices. Increasing the number of time slices decreases

throughput (Fig. 10b), due to the implied overhead. With a

throughput that is on par with RI and SI (one slice), our hybrid

approach still yields 3.8× higher recall. Similar observations

are made with respect to the state-based baseline strategies.

Resource costs of partial matches: The consumption of

resources may differ among partial matches, which we explore

with query Q3 over dataset DS2. The query computes the

average Euclidean distance to pairs of numeric values of A and

B events, checking whether the result is larger than a value

of C events. We established empirically that handling partial

matches of A,B events requires 5× more runtime than handling

matches of a single A event. We compare hybrid shedding

with and without explicit resource costs for the consumption of

partial matches (§IV-A). With a bound on the average latency,

Fig. 11a shows that our comprehensive cost model leads to

higher recall, at a minor reduction in throughput (Fig. 11b).

0
20
40
60
80

100

4 5 6 7 8

R
ec

al
l (

%
)

Pattern Length

RI
RS

SI
SS

Hybrid

(a) Recall.

5.0×103
1.0×104
2.0×104
4.0×104
8.0×104
1.6×105

 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Pattern Length

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 9: Impact of queried pattern length.

0
10
20
30
40
50
60

RI SI RS SS Hybrid
1TS

Hybrid
2TS

Hybrid
3TS

Hybrid
4TS

Hybrid
5TS

Hybrid
6TS

R
ec

al
l (

%
)

Shedding Approach

(a) Recall.

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

4.0×105

 1 2 3 4 5 6T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Number of Time Silces

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 10: Impact of temporal granularity.

F. Adaptivity to Changes in the Stream

Now, we consider changes in the distributions of the events’

payload data. For dataset DS1, we change the distribution

of attribute V for C events at a fixed point from U(2, 10)
to U(12, 20), thereby reversing the costs (worst case setting).

With a bound on the average latency (40%), we run Q1 with

four time windows (1K, 2K, 4K, and 8K events). Fig. 12

shows how our approach (§V-B) adapts the contribution and

consumption estimates: At the change point, recall drops to

zero as outdated estimates lead to shedding of all relevant

partial matches. However, the change is quickly detected and

incorporated. Convergence is quicker for smaller window sizes,

due to a shorter lifespan of partial matches.

G. Cost Model Estimation

We evaluate the impact of the cost model estimation with

query Q1 over dataset DS1. Q1 has two intermediate states

(partial matches of A events and A,B events). We vary the

number of clusters from 2 to 10 for each state (max decision tree

length is 10). Under a 50% average latency bound, we measure

the recall as illustrated in Fig. 13. Overall, the observed recall

is not very sensitive to the number of clusters. More clusters

lead to higher recall score, but only until reaching a certain

number (e.g., 8), after which the effect becomes marginal.

1102

0
20
40
60
80

100

80 60 40 20

R
ec

al
l (

%
)

Latency Bound (%)

w/o PM resource cost
PM resource cost

(a) Recall.

2.0×103

6.0×103

1.0×104

1.4×104

 20 40 60 80T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Latency Bound (%)

w/o PM resource cost
PM resource cost

(b) Throughput.

Figure 11: Impact of resource costs of partial matches.

 0
 20
 40
 60
 80

 100

 24
60

00

 24
80

00

 25
00

00

 25
20

00

 25
40

00

 25
60

00

 25
80

00

 26
00

00

R
ec

al
l (

%
)

Event Offset of the Event Stream

1K Events Time Window
2K Events Time Window
4K Events Time Window
8K Events Time Window

Figure 12: Adaptivity of the cost model.

H. Non-Monotonic Queries

To test the impact of query monotonicity, we rely on query

Q4 over dataset DS1. As discussed in §III-A, shedding may

produce false positives for non-monotonic queries, so that we

measure both precision and recall. We vary the occurrence

probability of the negated event type B from 5% to 50%.

The other types are evenly distributed. Fig. 14 shows the

results when shedding 10% of partial matches. Recall is

stable, as our approach discards only the least important partial

matches and all complete matches are detected. Yet, precision

decreases when increasing the probability of the negation, i.e.,

the number of false positives becomes larger. Whether this

effect is acceptable, depends on the selectivity of the query

parts that violate the monotonicity property.

I. Case Study: Bike Sharing

To assess real-world feasibility, we use the citibike dataset

[11] and the query of Listing 1. We consider all shedding

strategies with various bounds on the 99th percentile latency.

Here, the selectivity-based approaches (SI, SS) exploit the

user type. Our hybrid approach consistently yields the best

recall, see Fig. 15a, with the margin becoming larger for tighter

latency bounds. At a 20% bound, the recall of our approach

reaches 11.4×, 11×, 3.9×, 2.7× the recall of RI, SI, RS, SS,

respectively. Fig. 15b shows that the throughput of our hybrid

approach is comparable to the state-based strategies (RS and

SS), but lower than the input-based strategies (RI and SI). The

reason being that, for this dataset, our approach turns out to

shed more partial matches than input events.

J. Case Study: Cluster Monitoring

For the Google Cluster-Usage Traces [35], we ran the query

in Listing 3 under different latency bounds. Fig. 16a illustrates

that hybrid shedding yields the best recall, up to 4× better than

with input-based shedding (RI, SI) and 1.5× better than with

state-based shedding (RS, SS). Fig. 16b shows the observed

throughput, hinting at the general trade-off of input-based

and state-based shedding. The former tend to achieve higher

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
C

lu
st

er
s

in
 S

ta
te

 2

Number of Clusters in State 1

Impact of Training Models

0.80 0.84 0.86 0.88 0.89 0.89 0.89 0.89 0.89

0.83 0.84 0.91 0.91 0.93 0.94 0.93 0.94 0.93

0.85 0.89 0.91 0.92 0.94 0.95 0.94 0.95 0.94

0.85 0.89 0.91 0.92 0.96 0.95 0.95 0.95 0.94

0.85 0.89 0.92 0.95 0.96 0.96 0.96 0.94 0.94

0.89 0.92 0.93 0.96 0.96 0.96 0.96 0.95 0.95

0.89 0.92 0.96 0.96 0.96 0.96 0.96 0.96 0.97

0.89 0.92 0.96 0.96 0.96 0.96 0.96 0.96 0.97

0.90 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

R
ec

al
l

Figure 13: Cost model estimation.

0.0

0.2

0.4

0.6

0.8

1.0

 5 10 15 20 25 30 35 40 45 50

Probability of Negation(%)

Precision
Recall

Figure 14: Impact of monotonicity violation.

throughput at the expense of lower recall. Our hybrid approach

achieves similar throughput as the best performing baseline

strategy (SI), being slightly slower only for the 20% latency

bound. However, hybrid shedding achieves much higher recall,

thereby confirming our earlier observations.

VII. RELATED WORK

Since we reviewed related work on load shedding for data

streams already in §II-B, this section focuses on techniques

for efficient CEP and approximate query processing.

Efficient CEP. The inherent complexity of evaluating CEP

queries is widely acknowledged [43] and related optimizations

include parallelization [6], sharing of partial matches [43],

[34], semantic query rewriting [16], [42], and efficient rollback-

recovery in distributed CEP [28]. The characteristics and the

complexity of load shedding for CEP has been discussed in [24].

The presented algorithms, however, are limited to input-based

shedding and optimize shedding decisions for a set of queries

based on pre-defined weights. eSPICE [37] employs the event

types’ relative positions in a time window to assess the utility of

an event. These contribution are largely orthogonal to our work,

which optimizes the accuracy for a single query by hybrid load

shedding. While we sketched the idea of state-based shedding

in [44], this paper presents an operationalization of this idea.

Approximate query processing (AQP). AQP estimates the

result of queries [9], e.g., based on sampling or workload

knowledge [31]. For aggregation queries, sketches [12] may be

employed for efficient, but lossy data stream processing. Re-

cently, AQP was explored for sequential pattern matching [29],

with a focus on matches that deviate slightly from what is

specified in a query. We took up the idea to learn characteristics

from historic data to prioritize data for processing in our

baseline that assesses partial matches based on query selectivity.

Yet, hybrid shedding outperforms this strategy.

1103

0
20
40
60
80

100

80 60 40 20

R
ec

al
l (

%
)

Latency Bound (%)

RI
RS

SI
SS

Hybrid

(a) Recall Comparison

8.0×105

1.2×106

1.6×106

2.0×106

 20 40 60 80T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Latency Bound (%)

RI
SI

RS
SS

Hybrid

(b) Throughput Comparison

Figure 15: Case study: Bike sharing.

0
20
40
60
80

100

80 60 40 20

R
ec

al
l (

%
)

Latency Bound (%)

RI
RS

SI
SS

Hybrid

(a) Recall Comparison

1.0×105

2.0×105

3.0×105

4.0×105

5.0×105

 20 40 60 80T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

)

Latency Bound (%)

RI
SI

RS
SS

Hybrid

(b) Throughput Comparison

Figure 16: Case study: Cluster monitoring.

VIII. CONCLUSIONS

In this paper, we proposed hybrid load shedding for complex

event processing. It enables best-effort query evaluation, striv-

ing for maximal accuracy while staying within a latency bound.

Since the utility of an event in a stream may be highly dynamic,

we complemented traditional input-based shedding with a novel

perspective: shedding of partial matches. We presented a cost

model to balance various shedding strategies and decide on

what and how much data to shed. Our experiments highlight

the effectiveness and efficiency of our approach.

REFERENCES

[1] D. J. Abadi, D. Carney, U. Çetintemel, et al. Aurora: a new model
and architecture for data stream management. VLDB J., 12(2):120–139,
2003.

[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern
matching over event streams. SIGMOD, 147–160, 2008.

[3] Amazon Kinese. Amazon Kinese Data Streaming FAQs. https://aws.
amazon.com/kinesis/data-streams/faqs/, 2019. Last access: 14/10/19.

[4] A. Arasu, B. Babcock, S. Babu, et al. STREAM: the stanford data stream
management system. Data Stream Management, 317–336, 2016.

[5] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, et al. Heterogeneous
stream processing and crowdsourcing for urban traffic management.
EDBT, 712–723, 2014.

[6] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul. RIP: run-based intra-
query parallelism for scalable complex event processing. DEBS, 3–14,
2013.

[7] J. Bang, S. Son, H. Kim, Y. Moon, and M. Choi. Design and
implementation of a load shedding engine for solving starvation problems
in apache kafka. IEEE/IFIP, 1–4, 2018.

[8] U. Çetintemel, D. J. Abadi, Y. Ahmad, et al. The aurora and borealis
stream processing engines. Data Stream Management, 337–359.

[9] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing:
No silver bullet. SIGMOD, 511–519, 2017.

[10] C. Chekuri and S. Khanna. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM J. Comp., 35(3):713–728, 2005.

[11] Citi Bike. System Data. http://www.citibikenyc.com/system-data, 2019.
Last access: 14/10/19.

[12] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1-3):1–294, 2012.

[13] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algo., 55(1):58–75, 2005.

[14] G. Cugola and A. Margara. Processing flows of information: From data
stream to complex event processing. ACM Comput. Surv., 44(3):15:1–
15:62, 2012.

[15] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over
data streams. SIGMOD, 40–51, 2003.

[16] L. Ding, K. Works, and E. A. Rundensteiner. Semantic stream query
optimization exploiting dynamic metadata. ICDE, 111–122, 2011.

[17] feedzai.com. Modern Payment Fraud Prevention at Big Data Scale.
http://tiny.cc/feedzai 2013. Last access: 14/10/19.

[18] R. C. Fernandez, M. Weidlich, P. R. Pietzuch, and A. Gal. Scalable
stateful stream processing for smart grids. DEBS, 276–281, 2014.

[19] A. Floratou, A. Agrawal, B. Graham, et al. Dhalion: Self-regulating
stream processing in heron. PVLDB, 10(12):1825–1836, 2017.

[20] Fraugster. https://fraugster.com/, 2019.
[21] B. Gedik, K. Wu, and P. S. Yu. Efficient construction of compact

shedding filters for data stream processing. ICDE, 396–405, 2008.
[22] B. Gedik, K. Wu, P. S. Yu, and L. Liu. Adaptive load shedding for

windowed stream joins. CIKM, 171–178, 2005.
[23] B. Gedik, K. Wu, P. S. Yu, and L. Liu. A load shedding framework and

optimizations for m-way windowed stream joins. ICDE, 536–545, 2007.
[24] Y. He, S. Barman, and J. F. Naughton. On load shedding in complex

event processing. ICDT, 213–224, 2014.
[25] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins over

unbounded streams. ICDE, 341–352, 2003.
[26] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven

load shedding: Reducing size and error of voluminous and variable data
streams. IEEE Big Data, 2018.

[27] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer,
2004.

[28] G.F. Lima, M. Endler, A. Slo, et al. Skipping Unused Events to Speed
Up Rollback-Recovery in Distributed Data-Parallel CEP. BDCAT, 31–40,
2018.

[29] Z. Li and T. Ge. History is a mirror to the future: Best-effort approximate
complex event matching with insufficient resources. PVLDB, 10(4):397–
408, 2016.

[30] Y. Mei and S. Madden. Zstream: a cost-based query processor for
adaptively detecting composite events. SIGMOD, 193–206, 2009.

[31] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing
approximate query processing. SIGMOD, 1461–1476, 2018.

[32] U. Pferschy. Dynamic programming revisited: Improving knapsack
algorithms. Computing, 63(4):419–430, 1999.

[33] T. N. Pham, P. K. Chrysanthis, and A. Labrinidis. Avoiding class warfare:
Managing continuous queries with differentiated classes of service. The
VLDB Journal, 25(2):197–221, 2016.

[34] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on
event streams. SIGMOD, 495–510, 2016.

[35] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces:
format + schema. https://github.com/google/cluster-data.

[36] N. Rivetti, Y. Busnel, and L. Querzoni. Load-aware shedding in stream
processing systems. DEBS, 61–68, 2016.

[37] A. Slo, S. Bhowmik and K. Rothermel eSPICE: Probabilistic Load
Shedding from Input Event Streams in Complex Event Processing.
Middleware, 215–227, 2019.

[38] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. VLDB, 309–320, 2003.

[39] K. Teymourian, M. Rohde, and A. Paschke. Knowledge-based processing
of complex stock market events. EDBT, 594–597, 2012.

[40] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of
clusters in a data set via the gap statistic. J. R. Statist. Soc. B, 63(2):411–
423, 2001.

[41] M. Wei, E. A. Rundensteiner, and M. Mani. Achieving high output
quality under limited resources through structure-based spilling in XML
streams. PVLDB, 3(1):1267–1278, 2010.

[42] M. Weidlich, H. Ziekow, A. Gal, J. Mendling, and M. Weske. Opti-
mizing event pattern matching using business process models. TKDE,
26(11):2759–2773, 2014.

[43] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization
of expensive queries in complex event processing. SIGMOD, 217–228,
2014.

[44] B. Zhao. Complex event processing under constrained resources by
state-based load shedding. ICDE, 1699–1703, 2018.

1104

