
Complex Event Processing under Constrained
Resources by State-Based Load Shedding

Bo Zhao (expected graduation: March 2020)
Supervised by Matthias Weidlich

Humboldt-Universität zu Berlin, Germany
bo.zhao@hu-berlin.de

Abstract—Complex event processing (CEP) systems evaluate
queries over event streams for low-latency detection of user-
specified event patterns. They need to process streams of growing
volume and velocity, while the heterogeneity of event sources
yields unpredictable input rates. Against this background, models
and algorithms for the optimisation of CEP systems have been
proposed in the literature. However, when input rates grow by
orders of magnitude during short peak times, exhaustive real-
time processing of event streams becomes infeasible. CEP systems
shall therefore resort to best-effort query evaluation, which max-
imises the accuracy of pattern detection while staying within a
predefined latency bound. For traditional data stream processing,
this is achieved by load shedding that drops some input data
without processing it, guided by the estimated importance of
particular data entities for the processing accuracy.

In this work, we argue that such input-based load shedding is
not suited for CEP queries in all situations. Unlike for relational
stream processing, where the impact of shedding is assessed
based on the operator selectivity, the importance of an event
for a CEP query is highly dynamic and largely depends on
the state of query processing. Depending on the presence of
particular partial matches, the impact of dropping a single
event can vary drastically. Hence, this PhD project is devoted to
state-based load shedding that, instead of dropping input events,
discards partial matches to realise best-effort processing under
constrained resources. In this paper, we describe the addressed
problem in detail, sketch our envisioned solution for state-based
load shedding, and present preliminary experimental results that
indicate the general feasibility of our approach.

I. INTRODUCTION

Devices such as RFID readers, GPS navigators, and smart-
phones continuously collect and generate data for tracking and
monitoring purposes. Hence, we face the challenge of analysing
an unprecedented volume of sensed data in (quasi) real-time.
In this context, an event denotes an instantaneous occurrence
of a situation of interest at a particular point in time [6]. Based
on this notion, Complex Event Processing (CEP) became the
foundation of an emerging class of applications in domains
such as finance [20], smart grids [9], urban transportation [5],
or supply chain management [21]. CEP systems continuously
evaluate queries that correlate the events of an input stream.
Query matches then result in a stream of more high-level events,
thereby enabling an interpretation of the input stream.

A typical CEP query defines a sequence of event variables,
a set of predicates that indicate value correlations, and a time
window. Furthermore, it may define the structure of the complex
event to generate upon matching a pattern. We illustrate these
essential concepts by means of an example.

Example 1: We consider the case of bike-sharing in Beijing,
China, where more than 700,000 bikes, equipped with GPS
sensors and smart locks, are available to 11 million users [1].
Bikes are rented through a smartphone app and are operated in
a free-floating model: Users leave and lock a bike wherever and
whenever they finish a ride. Consequently, bikes may be parked
in obscure places, making them hard to find. Such situations
can be detected by evaluating the following query over a stream
of events of user interactions and bike availability:

PATTERN SEQ (req a, avail+ b[], unlock c)
WHERE diff(b[i].loc, a.loc) < λ, COUNT(b[])>5,
diff(c.loc, a.loc) > λ, c.UID=a.UID
WITHIN 10min
RETURN warning(a.loc, b[i].loc)

This query, formalised in the SASE language [3], [24], detects
the following pattern: A user requests a bike and there are more
than five bikes parking within distance λ. However, the user
then unlocks another bike, more than distance λ away. If such
a pattern is detected frequently, the operator shall schedule an
inspection of the respective area.

CEP systems shall evaluate queries with low latency. If
event streams have a high input rate, query evaluation quickly
becomes a performance bottleneck, since the number of partial
matches that need to be maintained for query evaluation may be
exponential in the number of processed events [25]. This yields
an exponential worst-case runtime complexity of common query
evaluation algorithms. Note that partial matches need to include
the actual payload of the matched events in order to enable
the potential generation of a complex event, which also yields
an exponential space complexity.

We illustrate this issue in Table I. After processing two events
of type ’req’, r1 and r2, denoting requests at a particular time
and location by a specific user, the system maintains two partial
matches (Table I, left). Now, processing two events of type
’avail’, a1 and a2, denoting availability of a specific bike (λ-
close to the requests), a CEP system maintains eight partial
matches: 〈r1〉, 〈r2〉, 〈r1, a1〉, 〈r1, a1, a2〉, 〈r1, a2〉, 〈r2, a1〉,
〈r2, a1, a2〉, 〈r2, a2〉. The next event in the stream would,
therefore, be evaluated against eight partial matches, even
though only four events have been processed so far.

Due to the complexity of evaluating CEP queries, various
optimisations have been proposed, such as delayed construction
of partial matches [25], pattern sharing [16],semantic query
rewriting [23], and compact encodings of partial matches [26].

1699

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00218

Table I. Partial matches for the query of Example 1.
Stream of ’req’ events (time, location, user:)
r1 = 〈1, (x1, y1), 5〉
r2 = 〈8, (x2, y2), 6〉

Stream of ’avail’ events (time, location, bike:)
a1 = 〈9, (x3, y3), 90〉
a2 = 〈10, (x4, y4), 85〉

Partial matches of SEQ(req a):

a.ts a.loc a.UID

1 (x1, y1) 5

8 (x2, y2) 6

Partial matches of SEQ(req a, avail+ b[]):

a.ts a.loc a.UID b.loc b.BID

1 (x1, y1) 5 (x3, y3) 90

1 (x1, y1) 5 (x4, y4) 85

1 (x1, y1) 5 (x3, y3) 90
(x4, y4) 85

8 (x2, y2) 6 (x3, y3) 90

8 (x2, y2) 6 (x4, y4) 85

8 (x2, y2) 6 (x3, y3) 90
(x4, y4) 85

However, when input rates are volatile and may grow un-
predictably by orders of magnitude during short peak times,
exhaustive real-time query evaluation becomes infeasible and
CEP systems shall resort to best-effort processing. That is, CEP
systems shall make most effective use of the available resources
and maximise the accuracy of pattern detection, while staying
within a predefined latency bound.

For traditional stream processing based on relational op-
erators such as selection, projection, and joins, best-effort
processing under constrained resources is achieved by load
shedding [10], [19], [22]. Some of the input data is dropped
without processing it. The selection of data to drop is then
guided by an estimation of its importance for the processing
accuracy, typically based on the selectivity of relational
operators [19]. Yet, traditional data streaming systems differ
from CEP systems in queries and execution paradigms. They
lack common CEP-specific operators (sequences, negation)
where the temporal order of events is of great importance, and
their partial evaluation results will not grow exponentially.

In this work, we argue that such input-based load shedding
is not well-suited for common CEP queries. The main reason is
that, unlike in the case of queries built of relational operators,
the importance of a specific event for processing is highly
dependent on the current state of the CEP system. Processing
a single event may not lead to any (partial or complete) match.
Yet, when processing the same event with a different set of
currently maintained partial matches, the result may be a large
number of matches. As explained above, the number of matches
may be exponential in the number of processed events. Hence,
a single event may have drastic implications depending on
the presence or absence of partial matches. This suggests to
approach load shedding based on the state of query processing.

Referring to the example given in Table I, for instance,
assume that the system processed r1, r2, a1, which yields
four partial matches 〈r1〉, 〈r2〉, 〈r1, a1〉, and 〈r2, a1〉. If the
system is overloaded, input-based shedding would drop the
next event a2. However, in this situation, dropping some partial
matches instead of the input event may be a more beneficial
strategy. Partial matches 〈r1〉 and 〈r1, a1〉 are about to expire
due to the time window (10min) and thus, unlikely to yield
complete matches. Hence, dropping them would reduce the
system load with supposedly little impact on the accuracy of
query processing. This may free capacity to process event a2
and reach a state comprising 〈r2〉, 〈r2, a1〉, and 〈r2, a1, a2〉.
Due to the time window, these partial matches are more likely to
result in complete matches compared to those dropped earlier.

Against this background, this PhD project aims at developing
the foundations of state-based methods for complex event
processing under constrained resources. In particular, we strive
for load-shedding techniques that optimise the accuracy of
query evaluation, once processing becomes lossy due to the
CEP system being overloaded. Following the above explanation,
our load-shedding mechanism shall be state-based, dropping
partial matches instead of input events. A realisation of state-
based load shedding requires us to rank partial matches, based
on their contribution to the overall accuracy of query processing
as well as the costs induced by them. Intuitively, partial matches
that are less likely to contribute to complete matches, but incur
high processing costs, are the first to shed.

We see two major challenges for state-based load shedding.
First, the contribution as well as the consumption of resources
incurred by a partial match are known only in retrospect,
once all events that can potentially lead to further (partial or
complete) matches have been processed. As such, state-based
load shedding needs to assess the expected contribution and
resource consumption of a partial match, respectively.

The need to predict how a partial match will develop leads to
a second major challenge, which is efficiency of the reasoning.
Shedding decisions need to be taken instantaneously. Running a
complex forecast procedure to estimate expected contributions
and resource consumption for each partial match is infeasible
when a CEP system becomes overloaded and may thwart
any benefit of load shedding in the first place. The question,
therefore, is how to design data structures and algorithms, so
that load shedding decisions are taken in constant time.

In the remainder, we elaborate in more detail on these
challenges and outline our ideas to address them. Specifically,
the next section reviews related work on load shedding in
stream processing. The problem of state-based load shedding
is formalised in Section III. Subsequently, we report on a first
approach to address this problem in Section IV and present
preliminary experimental results in Section V. We close with a
discussion of the next steps of this PhD project in Section VI.

II. RELATED WORK

Techniques for load-shedding have received considerable
attention in the literature on data stream processing, unlike for
CEP. Aurora [2] was among the first systems for relational
stream processing that employed load shedding to cope with
bursty input rates. Moving beyond random shedding strategies
that drop arbitrary tuples, Tatbul et al. [19] proposed semantic
load shedding that discards tuples based on their contribution
to the query output, measured by a notion of utility. So called
‘drop operators’ then discard tuples while maximising utility.

Due to the inherent complexity of joins over data streams,
several works considered load shedding for streaming joins.
For binary equi-joins, Kang et al. [14] showed how to allocate
computing resources across two input streams based on
arrival rates to maximise the number of output tuples. Load
shedding decisions, however, may also be taken based on value
distributions of the join attributes [7]. Also, GrubJoin [11]

1700

realises load shedding for multi-way streaming joins based on
value distributions of attributes.

Recently, shedding mechanisms that are operator independent
and do not assume knowledge about value distributions of tuple
attributes have presented. Rivetti et al. [18] proposed a load-
aware shedding technique for distributed streaming systems,
which sheds data based on an estimation of the processing
duration of tuples. That enables a targeted optimisation of
queueing latencies. Also, for such distributed infrastructures,
approaches to manage fairness among several federated stream
processing systems, such as THEMIS [13], rely on estimates
of how much a tuple contributes to a query result. While not
targeting load shedding, FERARI [27] performs load balancing
among multiple clouds, reducing inter-cloud communications
rather than aiming at best effort query evaluation.

Turning to matching of sequential patterns over streams,
Li and Ge [15] recently showed how to learn characteristics
of partial matches from data processed in the past in order
to prioritise input data for processing. Their focus, however,
is on approximate processing, where matches are allowed to
deviate from what is specified in a query. Also, the query
model neglects correlation predicates in queries (i.e., WHERE
clauses, see Example 1) and all processing decisions are, again,
taken per element of the input stream.

A first take on load shedding for CEP queries as discussed
above has been presented by He et al. [12]. They argue that
load shedding algorithms developed for data stream processing,
as reviewed above, are inapplicable for CEP queries. The
authors then present an analysis of the theoretical complexity
bounds for load shedding for CEP queries and outline shedding
algorithms. However, shedding is still input-based, applied per
event of the input stream, and grounded in pre-defined weights.

We conclude that various load shedding mechanisms have
been proposed, mostly in the field of relational data stream
processing. However, all existing approaches are input-based:
They discard some elements of the input stream. In this work,
we argue that for CEP queries this is not always a suitable
approach, since the consequences of dropping an input event are
subject to a large variability. A more controlled approach shall
realise shedding based on state of query processing, discarding
partial matches rather than input events.

III. THE PROBLEM OF STATE-BASED LOAD SHEDDING

We model the problem of state-based load-shedding for
CEP queries using the following concepts. By S, we denote
an infinite event stream comprising discrete events, i.e., data
elements that denote a particular occurrence of interest [8].
Events carry timestamps that induce the total order of events
in the stream. The finite prefix of such a stream up to a time
point t is denoted by S|t.

Let Q be a CEP query. For our purposes, the exact query
model is not relevant. A query may be based on automata, trees
of streaming operators, or be grounded in logic formalisms [4].
However, we assume that Q contains operators that are common
to CEP queries, see [25], such as sequences of event variables,
negation, Kleene closure, value predicates, and time windows.

Given a stream prefix S|t and a query Q, we write O|t for
the output event stream generated by evaluating Q over S|t. Put
differently, O|t is the sequence of (complex) events generated
from the matches of Q over S|t. In practice, query evaluation
incurs a latency, measured between the time the last event of
a match arrived (i.e., the first point in time that the match
could have been generated) and the time the match has actually
been detected. This latency is typically bounded, meaning that
matches that are reported late are no longer useful. We capture
this in our model as follows: By µ(t), we model the latency
of query processing at time t, which is given by the latencies
observed for the matches that have been generated in some
fixed-size measurement interval ending at t.

During the evaluation of Q, a system needs to maintain a set
of partial matches. We denote by R(t) the set of these partial
matches at a time point t. As discussed above, this set may be
subject to exponential growth in the size of the stream prefix
S|t that has been processed already.

Load shedding happens when a CEP system is overloaded.
Here, we assume that such overload situations are reflected in
the observed latency of processing being above a pre-defined
threshold θ, i.e., µ(t) > θ at some time point t.

In an overload situation, our approach is to work with the
state of query processing instead of the input stream. That
is, rather than realising load shedding by adapting the stream
prefix that is considered for processing, we discard partial
matches. This makes the evaluation of the next event of the
stream less costly, i.e., it increases the throughput of the system,
so that the latency drops below the threshold again.

Load shedding that discards partial matches may have
consequences on the output stream. While it cannot introduce
false positives (discarding partial matches will never increase
the set of generated matches), it may result in false negatives.
Some events in the output stream may be missing compared
to processing the input stream without load shedding. We
capture such errors by means of a difference of stream prefixes,
δ(O|t, O

′
|t), that captures how many events of the stream prefix

O|t need to be projected to obtain the stream prefix O′|t.
Following this line, state-based load shedding requires us

to decide how many and which partial matches to shed. This
selection can be captured as an optimisation problem. If the
CEP system is overloaded at time t, a state-based load shedding
strategy ρ shall reduce the set of partial matches, ρ(R(t)) =
R′(t) with R′(t) ⊂ R(t), such that the latency is below the
threshold again, µ(t′) < θ for t′ > t, whereas the resulting loss
in the output stream is minimal, δ(O|t′ , O′|t′) is minimal for
t′ > t with O|t′ and O′|t′ being the output streams generated
by Q over S|t′ without and with load shedding, respectively.

The above formulation of state-based load shedding provides
the view on a single overload situation of a system. In practice,
after shedding at some time point t, latency may be reduced
below the threshold only until some time point t′′, i.e., µ(t′) <
θ for t < t′ < t′′, but µ(t′′) > θ. However, the above problem
formulation directly extends to such cases. Shedding would be
triggered again at time point t′′, with the goal still being to
minimise the resulting loss in the output stream.

1701

IV. TOWARDS STATE-BASED LOAD SHEDDING

For state-based load shedding, we need to select how many
and which partial matches to shed in an overload situation.
In this section, we describe our ideas on how to address the
second question, the selection of partial matches, and assume
that the number of partial matches to shed is fixed. That is,
we strive for a ranking of current partial matches that governs
the order in which matches are considered for shedding.

Such a ranking of partial matches considers two aspects
per partial match r ∈ R(t) that is present in the CEP system
when shedding is triggered at time point t. First, there is
the contribution of r to the output event stream in terms of
the number of complete matches that are produced in the
output stream based on r. This is captured in reference to the
remaining time-to-live (TTL) of r, which can be calculated
at time t based on the time at which r was created and the
time window specified by the respective query. We denote this
relative contribution of r by C+(r|t). Second, we consider
the resource consumption of r, which refers to the number
of partial matches that are derived based on r. Again, this
aspect must be incorporated in a relative manner, based on the
remaining TTL of the partial match r at time t. We denote the
relative resource consumption by C−(r|t). Intuitively, matches
with little contribution, low C+, and severe costs, high C−,
relative to their TTL, are the best candidates for load shedding.

Apparently, neither C+ nor C− are known at the time of load
shedding, as they depend on future events in the input stream.
Hence, we need to estimate these values, yet conduct such
prediction with low computational overhead. We assume that
the input event stream shows a reasonable level of regularity in
terms of correlation among attributes’ value distributions. Such
assumption holds true in common real-world applications. For
instance, in Example 1, by monitoring correlations of locations
among the sequence of bike request, bike available, and bike
unlock events, a system may identify that most partial matches
related to area A never finished as full matches, meaning that
respective bikes had been successfully found and unlocked.
Therefore, it would be wise to discard partial matches within
the particular area A. On a more abstract level, we expect that
the contribution and resource consumption of current partial
matches is close to the one observed for similar partial matches
in the past. Our approach, therefore, is to learn respective
models that exploit similarities of partial matches.

A. Learning a Contribution Model

The contribution C+(r|t) of a partial match r at time t,
is estimated based on past partial matches that had the same
characteristics in terms of attribute values, at the same relative
time point. To this end, we maintain a model that tracks hash
values of all partial matches’ attributes and the number of
complete matches generated by these partial matches. With
Rr(t) ⊆ R(t) as the set of current partial matches that have
the same hash as r, and Mr(t) as the set of complete matches
generated based on matches in Rr(t), the contribution is defined
as C+(r|t) = |Mr(t)|/|Rr(t)|.

Algorithm 1: Learning C+

Input: Stream prefix S|t; Partial matches R(t); Hash funct. h; Contribution C+

Output: Updated contribution C+

1 foreach event e in stream prefix S|t do
2 foreach partial match r ∈ R(t), r having no derived partial matches do
3 if r will yield complete match with e then
4 foreach partial match r′ ∈ R(t), r′ being derived from r do
5 get time slice t′ for r′;
6 update contribution C+(h(r′|t′));

However, maintaining this model for every single time point
is expensive, especially with large time windows. Hence, we
consider an abstraction that defines the measures for time slices
instead of single time points. Accordingly, we calculate C+

solely for each time slice and the size of these slices becomes
a tuning parameter for the accuracy of the prediction model.
The intuition of this approach is given in Alg. 1.

B. Learning a Resource Consumption Model

Resource consumption of a partial match r is captured based
on the partial matches derived based on r in the remaining
TTL. As such, estimating the resource consumption can be
approached with a similar approach as described above for the
contribution. That is, the estimation for a partial match r is
based on the resource consumption observed for partial matches
in the past, which had the characteristics as r, i.e., the same hash
of attribute values, at the same relative time point. Furthermore,
to reduce the computational overhead, we also consider this
model solely for time slices instead of individual points in
time. The algorithmic approach is similar to Alg. 1. However,
we now keep statistics about the number of derived matches,
which are updated when a complete match is obtained or a
partial match is discarded because of a closing time window.

C. Load Shedding

The above models for contribution and resource consumption
enable load shedding, as follows. When a system is overloaded
at time t, all current partial matches r are ranked based on a
scoring function. The latter is defined as a linear combination
of C+(r|t) and C−(r|t). Then, the partial matches that receive
the lowest scores are subject to shedding. As stated above, we
consider scenarios in which a fixed number of partial matches
is discarded whenever load shedding is triggered.

V. PRELIMINARY EXPERIMENTAL RESULTS

To show the feasibility of our ideas, we developed a
stand-alone prototype and considered a workload of a cluster
management scenario. We relied on real-world event streams of
the Google Cluster-Usage Traces [17] as well as two monitoring
queries. Both queries define a sequence of three event variables,
include various value predicates, and operate with a time
window of several hours. All results have been obtained on a
PC (Intel i7-4790 CPU, 8GB RAM, Ubuntu 16.04).

Table II illustrates the accuracy (with respect to processing
without load shedding) and average throughput (averaged over
five experiment runs) when running the two evaluation queries
with different time windows and applying either our approach to

1702

Table II. Accuracy and throughput (e/sec) of Q1 and Q2
shedding
strategy

time
window

Q1 Q2

accuracy avg throughput accuracy avg throughput

SBLS 3 hours 80.50% 77,936 85.34% 505,631
RBLS 3 hours 73.00% 85,273 72.66% 548,768

SBLS 5 hours 82.31% 53,548 70.95% 498,873
RBLS 5 hours 49.11% 70,002 54.44% 549,195

SBLS 7 hours 86.20% 47,128 64.23% 494,393
RBLS 7 hours 33.77% 71,463 41.04% 566,189

state-based load shedding (SBLS) or random shedding (RBLS)
of partial matches. Regardless of the chosen strategy, load
shedding affects 20% of the partial matches and is triggered
by a latency threshold of 150µs (Q1) and 6µs (Q2).

Clearly, SBLS outperforms RBLS in accuracy and the margin
becomes larger as the size of time window increases. The
throughput observed for our approach, in turn, is slightly lower
than with random shedding, due to the need to maintain the
contribution and resource consumption models. These results
provide us with evidence that our approach can significantly
improve the accuracy of complex event processing under
constrained resources, with a minor performance overhead.

Figure 1 further shows the accuracy as a function of the
weight of the contribution model in the scoring of partial
matches, leaving the weight of the resource consumption model
fixed. We observe a non-linear dependency, highlighting a
potential for tuning our state-based load shedding approach.

1 2 4 8 1 6 3 2 6 45 0
5 2
5 4
5 6
5 8
6 0
6 2
6 4
6 6
6 8

5 3 . 3 1
5 4 . 9 7

5 6 . 8 8

5 9 . 4 5 6 0 . 2 2

6 4 . 2 3
6 2 . 7 2

Ac
cur

acy

C o n t r i b u t i o n w e i g h t
Figure 1: Accuracy vs. weight of contribution model

VI. DISCUSSION AND OUTLOOK

We proposed to evaluate CEP queries under constrained
resources with state-based instead of input-based load shedding.
We outlined our approach to rank partial matches for shedding
and presented preliminary experimental results.

As a next step, we will answer the question of how many
partial matches to shed, as shedding fixed amounts of data
will not yield optimal accuracy. In addition, we intend to
come up with more efficient data structures and algorithms,
for instance based on sketching, to maintain contribution and
resource consumption models, and plan to explore different
types of ranking functions and their parametrisations.

Finally, we plan to integrate state-based load shedding into
existing optimisations for CEP, e.g., those exploiting semantic
information. We expect that knowledge about regularities of
a stream helps to achieve an even more effective selection
of partial matches for shedding. Also, we aim to explore
the integration of our approach with common parallelisation
schemes for CEP queries.

REFERENCES

[1] http://www.washingtonpost.com/world/asia pacific/
china-exports-its-bike-sharing-revolution-to-the-us-and-the-world/
2017/08/31/474c822a-87f4-11e7-9ce7-9e175d8953fa story.html.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. B. Zdonik. Aurora: a new model
and architecture for data stream management. VLDB J., 12(2):120–139,
2003.

[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern
matching over event streams. In SIGMOD, pages 147–160, 2008.

[4] A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Weidlich.
Complex event recognition languages: Tutorial. In DEBS, pages 7–10.
ACM, 2017.

[5] A. Artikis et al. Heterogeneous stream processing and crowdsourcing
for urban traffic management. In EDBT, pages 712–723. OpenProceed-
ings.org, 2014.

[6] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. Kim. Composite
events for active databases: Semantics, contexts and detection. In VLDB,
pages 606–617, 1994.

[7] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over
data streams. In SIGMOD, pages 40–51, 2003.

[8] O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Company, 2010.

[9] R. C. Fernandez, M. Weidlich, P. R. Pietzuch, and A. Gal. Scalable
stateful stream processing for smart grids. In DEBS, pages 276–281.
ACM, 2014.

[10] B. Gedik, K. Wu, and P. S. Yu. Efficient construction of compact
shedding filters for data stream processing. In ICDE, pages 396–405,
2008.

[11] B. Gedik, K. Wu, P. S. Yu, and L. Liu. A load shedding framework
and optimizations for m-way windowed stream joins. In ICDE, pages
536–545, 2007.

[12] Y. He, S. Barman, and J. F. Naughton. On load shedding in complex
event processing. In ICDT, pages 213–224, 2014.

[13] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. R. Pietzuch. THEMIS:
fairness in federated stream processing under overload. In SIGMOD,
pages 541–553. ACM, 2016.

[14] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins over
unbounded streams. In ICDE, pages 341–352, 2003.

[15] Z. Li and T. Ge. History is a mirror to the future: Best-effort approximate
complex event matching with insufficient resources. PVLDB, 10(4):397–
408, 2016.

[16] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on
event streams. In SIGMOD, pages 495–510. ACM, 2016.

[17] C. Reiss, J. Wilkes, and J. Hellerstein. Google cluster-usage traces:
format and schema. Technical report, 2013.

[18] N. Rivetti, Y. Busnel, and L. Querzoni. Load-aware shedding in stream
processing systems. In DEBS, pages 61–68, 2016.

[19] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. In VLDB, pages 309–320,
2003.

[20] K. Teymourian, M. Rohde, and A. Paschke. Knowledge-based processing
of complex stock market events. In EDBT, pages 594–597. ACM, 2012.

[21] T. T. L. Tran, C. A. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. J. Shenoy.
Probabilistic inference over RFID streams in mobile environments. In
ICDE, pages 1096–1107. IEEE, 2009.

[22] M. Wei, E. A. Rundensteiner, and M. Mani. Achieving high output
quality under limited resources through structure-based spilling in XML
streams. PVLDB, 3(1):1267–1278, 2010.

[23] M. Weidlich, H. Ziekow, A. Gal, J. Mendling, and M. Weske. Optimizing
event pattern matching using business process models. IEEE Trans.
Knowl. Data Eng., 26(11):2759–2773, 2014.

[24] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In SIGMOD, pages 407–418, 2006.

[25] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization
of expensive queries in complex event processing. In SIGMOD, pages
217–228, 2014.

[26] O. Poppe, C. Lei, S. Ahmed and E. A. Rundensteiner. Complete Event
Trend Detection in High-Rate Event Streams. In SIGMOD, pages 109–
124, 2017.

[27] I. Flouris, et al. FERARI: A Prototype for Complex Event Processing
over Streaming Multi-cloud Platforms. In SIGMOD, pages 2093–2096,
2016.

1703

http://www.washingtonpost.com/world/asia_pacific/china-exports-its-bike-sharing-revolution-to-the-us-and-the-world/2017/08/31/474c822a-87f4-11e7-9ce7-9e175d8953fa_story.html
http://www.washingtonpost.com/world/asia_pacific/china-exports-its-bike-sharing-revolution-to-the-us-and-the-world/2017/08/31/474c822a-87f4-11e7-9ce7-9e175d8953fa_story.html
http://www.washingtonpost.com/world/asia_pacific/china-exports-its-bike-sharing-revolution-to-the-us-and-the-world/2017/08/31/474c822a-87f4-11e7-9ce7-9e175d8953fa_story.html

