
CHARM: Chiplet Heterogeneity-Aware Runtime
Mapping System

Alessandro Fogli
Imperial College London
London, United Kingdom
a.fogli18@imperial.ac.uk

Bo Zhao
Aalto University
Espoo, Finland
bo.zhao@aalto.fi

Peter Pietzuch
Imperial College London
London, United Kingdom

prp@imperial.ac.uk

Jana Giceva
TU Munich

Munich, Germany
jana.giceva@in.tum.de

Abstract
The growing disparity between CPU core counts and avail-
able memory bandwidth has intensified memory contention
in servers. This particularly affects highly parallelizable ap-
plications, which must achieve efficient cache utilization to
maintain performance as CPU core counts grow. Optimizing
cache utilization, however, is complex for recent chiplet-
based CPUs, whose partitioned L3 caches lead to varying
latencies and bandwidths, even within a single NUMA do-
main. Classical NUMA optimizations and task scheduling
fail to address the performance issues of chiplet-based CPUs.

We describe Chiplet Heterogeneity Aware Runtime Map-
ping (CHARM), a new runtime system designed for chiplet-
based CPUs. CHARM combines chiplet-aware task sched-
uling heuristics, hardware-aware memory allocation, and
fine-grained performance monitoring to optimize workload
execution. It implements a lightweight concurrency model
that combines user-level threading features, such as individ-
ual stacks, per-task scheduling, and state management, with
coroutine-like behavior, allowing tasks to suspend and re-
sume execution at defined points while efficiently managing
task migration across chiplets. Our evaluation across diverse
scenarios shows CHARM’s effectiveness in optimizing the
performance of memory-intensive parallel applications.

ACM Reference Format:
Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva. 2026.
CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System.
In 21st European Conference on Computer Systems (EUROSYS ’26),
April 27–30, 2026, Edinburgh, Scotland, UK. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3767295.3769390

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769390

BFS PR CC
GUPS

Grap
h500 SSS

P

Str
eam

clu
ste

r

Lo
ss

cal
c.

Grad
ien

t com
p.

TPC-H
YCSB

TPC-C
0

1

2

3

4

Sp
ee

du
p

1.80 1.61
1.90 1.65 1.54

2.34
1.93

3.85

2.81

1.51
1.08 1.04

Graph Processing
Parallel Computing
Statistical Analytics (SGD)

OLAP
OLTP

Fig. 1: CHARM speedups compared to NUMA-aware systems
across various benchmarks and workloads

1 Introduction
The rapid evolution of server hardware has led to a grow-
ing disparity between CPU core counts and the available
memory bandwidth. This widening gap between compute
power and memory resources particularly affects paralleliz-
able applications, which require efficient memory accesses.
As CPU core counts continue to increase, the competition
for memory bandwidth intensifies, making cache utilization
critical for maintaining application performance [21, 45, 46].

To address these challenges, researchers have explored
various approaches, with a significant focus on non-uniform
memory access (NUMA) architectures [2, 18, 33]. NUMA sys-
tems attempt to bridge the gap between compute power and
memory resources by providing localized memory access
for each core, thus reducing contention for memory band-
width and interconnect communication. For example, Lozi
et al. [23] analyze the Linux scheduler on NUMA systems
and highlight issues with load balancing across CPU cores.
Leis et al. [20] introduce morsel-driven parallelism, a NUMA-
aware query evaluation framework that dynamically assigns
small fragments of input data to worker threads. Kaestle et
al. [17] propose Shoal, a system that automatically allocates
and replicates data in NUMA systems.

While such NUMA-focused solutions are valuable, the
landscape of CPU architectures has evolved significantly

https://doi.org/10.1145/3767295.3769390
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3767295.3769390


EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

with the introduction of chiplet-based CPUs [14, 24, 28, 29, 44].
Chiplet-based CPUs adopt a modular design that consists of
multiple smaller dies, or chiplets, interconnected to form a
larger, more powerful processor. This offers superior flexibil-
ity and scalability, allowing manufacturers to create a wide
range of processor configurations tailored to performance
and power requirements. Consequently, major vendors, such
as AMD, Intel, and ARM, adopt this approach in their latest
CPU designs [12, 14, 24, 28, 30].

Chiplet-based CPUs, however, also present new challenges
in terms of the memory hierarchy and inter-core communi-
cation, even within the same NUMA domain [9, 13, 22, 49].
The partitioned nature of the L3 cache, which is distributed
across multiple chiplets, introduces a trade-off between cache
locality and total cache sizes [9]. Tasks scheduled on fewer
chiplets benefit from lower latencies due to local cache ac-
cesses but have limited cache capacity. Conversely, spreading
tasks across multiple chiplets increases available cache sizes
at the cost of higher access latencies. Such heterogeneity
extends to inter-core communication, with a wide range
of latencies and bandwidths between cores, depending on
their location within the chiplet architecture. As a result, a
poor task scheduling policy can reduce performance or even
result in degrading performance with more cores, and is par-
ticularly acute for memory-intensive workloads. Optimizing
cache usage and memory allocation for chiplet-based archi-
tectures must therefore consider such hardware features and
dynamically adapt to changing workloads.

To address these challenges, we describe Chiplet Hetero-
geneity Aware Runtime Mapping (CHARM), a new runtime
system designed for chiplet-based CPUs. CHARM uses chiplet-
aware task scheduling heuristics, adaptive cache partitioning,
coroutine-based task management and fine-grained perfor-
mance monitoring to optimize workload execution:
(1) Chiplet-aware task scheduling heuristics: CHARM
employs heuristics that optimize task placement based on
cache affinity and inter-chiplet latencies with a focus on
minimizing inter-chiplet communication overhead.
(2) Adaptive cache partitioning: CHARM dynamically
adjusts cache allocations based on workload characteristics.
This helps balance cache locality and utilization in response
to changing workload demands.
(3) Fine-grained parallelism: CHARM utilizes lightweight
coroutines that offer a low context switching overhead. This
enables efficient management of concurrency, which is par-
ticularly beneficial for chiplet architectures that benefit from
minimizing the overhead of task switching.
(4) Performance profiling and optimization: CHARM
continuously monitors and analyzes application performance
metrics. With low-overhead instrumentation, it collects data
on computational load and communication patterns, which
it uses to make dynamic runtime decisions, such as task
migration and scheduling adjustments.

MEMORY / IO
DIE

CH. 1
CH. 2

Memory
ControllerPCIe 5.0

Chp 2Chp 1 Chp 3 Chp 4

Chp 8Chp 7Chp 6Chp 5

32 MB
L3

CORE   L2

CORE   L2

CORE   L2

CORE   L2

L2   CORE

L2   CORE

L2   CORE

L2   CORE

Fig. 2: AMD EPYC Milan

We evaluate CHARM across diverse computational sce-
narios, including graph processing, statistical analytics, an-
alytical databases, and highly parallel workloads. Based on
our evaluation, we provide insights on how to design and
configure future systems to best exploit chiplet-based CPUs:
1. Chiplet-aware task partitioning is particularly effective
for workloads with irregular memory access patterns, such
as graph processing.
2. For OLAP workloads, a hybrid cache partitioning strategy
often outperforms strictly local approaches.
3. Higher core counts amplify synchronization and inter-
chiplet communication overheads, affecting performance.
This is particularly noticeable in statistical analytics for ma-
chine learning tasks.
4. Overly strict NUMA-aware optimizations can significantly
harm performance on chiplet-based CPUs.
The rest of the paper is structured as follows:
• We give background on chiplet-based CPU architectures

and analyze their inter-core latencies (§2).
• We present the challenges of implementing effective

chiplet-aware scheduling strategies (§3).
• We describe the architecture of CHARM, including its

core components, chiplet-aware task scheduling heuris-
tics, and monitoring strategies (§4).
• We present a comprehensive evaluation of CHARM with

various benchmarks and applications (§5).

2 Chiplet-Based CPUs
Chiplet-based CPUs are a significant advancement in proces-
sor design: they utilize modular systems with interconnected
smaller dies, or chiplets, to create more powerful processors.
This approach offers benefits over traditional monolithic de-
signs, including enhanced scalability, better manufacturing
yields, and reduced costs [9]. The flexibility of chiplet designs
allows manufacturers to combine various chiplets, meeting
different performance and power requirements, and simpli-
fying upgrades by enabling individual chiplet replacement or
updates [49]. For these reasons, in recent years, major com-
panies such as AMD, Intel, and ARM adopted this technology
in their latest processors [12, 24, 30].

Fig. 2 shows the architecture of a single-socket AMD EPYC
Milan CPU. It uses multiple core complex dies (CCDs), i.e.,
chiplets, connected to a central I/O die via AMD’s Infinity



CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

0 25 50 75 100 125 150 175 200
Inter-core Latency [ns]

0

50

100

CD
F

[%
]

Within Chiplet
Within NUMA
Cross NUMA

Fig. 3: Cumulative distribution function (CDF) of core-to-
core latency in AMD EPYC Milan CPUs

2010
Intel

Nehalem

2015
Intel

Broadwell

2020
AMD
Rome

2021
AMD
Milan

2022
AMD

Milan-X

2023
AMD
Genoa

2024
AMD

Bergamo

2025
AMD
Turin

2026
Intel

Sierra Forest

0

100

200

300

Co
un

t

CPU Cores
Memory Channels

Fig. 4: Number of memory channels vs. cores over the years

Fabric interconnect. Each CCD contains one or two core
complexes (CCXs), depending on the processor generation.
Each CCX consists of multiple cores, each paired with its
own L2 cache, surrounded by a shared 32 MB L3 cache. The
aggregate L3 cache is distributed across the chiplets, rather
than being a single unified cache for the entire processor.

2.1 Inter-core latencies
The performance of chiplet-based CPUs is affected signifi-
cantly by non-uniform access times to the L3 cache and by
the varying latencies and bandwidths between cores. We
measure core-to-core latencies on a dual-socket AMD EPYC
Milan processor, assigning threads to different cores and us-
ing compare-and-swap (CAS) operations to measure commu-
nication delays. The cumulative distribution function (CDF)
in Fig. 3 shows the results. We observe a clear latency hier-
archy: communication between cores on the same chiplet is
fastest, followed by communication within the same NUMA
node. The slowest latencies occur across NUMA nodes, re-
flecting the fact that on-chip communication is significantly
faster than inter-chip communication.

In contrast to typical assumptions, the “within NUMA”
curve shows greater variability. There are three clear group-
ings of latencies: the lowest around 25 ns represents intra-
chiplet communication; a middle group around 80–90 ns in-
dicates inter-chiplet but intra-CCX (core complex) communi-
cation; and a higher group beyond 150 ns represents commu-
nication across different CCXs within the same NUMA node.
This stepped distribution highlights the heterogeneous na-
ture of core-to-core latencies within a single NUMA domain
in chiplet-based CPUs and can have a significant impact on
performance. This complicates task allocation and resource
assignment and can lead to imbalances in utilization.

2.2 More cores, limited memory channels
Using chiplets, manufacturers can pack more cores into a sin-
gle package, enhancing computational power and efficiency.

38 B 380 B 4 KB 38 KB 380 KB 4 MB 38 MB 380 MB 4 GB 38 GB
Data Size

10−4

10−3

10−2

10−1

100

Ex
ec

ut
io

n
Ti

m
e

(s)

0.68x 0.68x 0.67x 0.66x 0.66x 0.59x
0.81x

1.76x

2.42x

2.50x
Chiplet L3 cache size
LocalCache
DistributedCache

Fig. 5: LocalCache vs. DistributedCache: write operation
speedup when varying the data array size (with 8 chiplets)

This strategy, however, does not help with the limited mem-
ory bandwidth per core. Fig. 4 shows this increasing dispar-
ity: while in 2010, high-end server processors typically had
4–8 cores, as of 2023, AMD’s EPYC Genoa processors offer
up to 96 cores. In contrast, memory channel growth has not
kept pace: current high-end CPUs have up to 8–12 memory
channels. This trend is expected to continue: by 2026, we may
see CPUs with 300 cores but not more memory channels.

The increase in memory bandwidth per channel has also
not kept pace with the rise in core counts. For example, DDR5
roughly doubles the bandwidth of DDR4, but core counts
have increased by an order of magnitude since 2010. As a
result, the available bandwidth per core continues to decline,
even as the total socket bandwidth improves.

Looking at the cache hierarchy, we see that chiplet designs
have enabled significant increases in L3 cache capacity (e.g.,
AMD’s EPYC processors have up to 256 MB of L3). This
helps mitigate some of the memory bandwidth limitations
but comes with an increased heterogeneity of latencies. This
requires us to adjust how we run applications to unlock the
full potential of chiplet-based CPUs.

2.3 Parallel processing on chiplets
The increasing core counts and limited memory bandwidth
present challenges for parallel processing on chiplet-based
CPUs. As more cores compete for the same memory re-
sources, intelligent utilization of on-chip caches becomes cru-
cial to maintain high performance. This scenario raises im-
portant questions about how to best leverage the distributed
nature of L3 caches across multiple chiplets.

We investigate the performance of two caching strategies
on multi-chiplet CPUs: LocalCache and Distributed-Cache.
In our setup, LocalCache confines data access to CPU cores
within a one chiplet, thereby leveraging its local L3 cache;
DistributedCache distributes the same number of cores
across multiple chiplets, utilizing the collective L3 cache ca-
pacity but incurring inter-chiplet communication overhead.

To understand these effects, we conduct a microbench-
mark on a single-socket 8-chiplet AMD EPYC Milan CPU.
We measure the execution time of a multithreaded (8 threads)
write to a vector, divided into contiguous equal-sized seg-
ments. Each thread is assigned to a dedicated core and calcu-
lates the start and end indices of its assigned segment. We



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

report the mean of 1,000 iterations, varying the data size
from 38 B to 38 GB. As a warm-up, each thread performs a
pass over its segment, setting all elements to 1.

Fig. 5 shows the results on a logarithmic scale: for data
sizes up to 38 MB, LocalCache has superior performance
compared to DistributedCache with lower execution times
due to the avoidance of inter-chiplet communication. This
advantage diminishes beyond 32 MB due to limited L3 cache
capacity. At that point, DistributedCache becomes more ef-
fective, peaking at a 2.5× speedup for the 38 GB dataset. The
performance difference between the two strategies ranges
from 0.6× to 2.5×, and the optimal choice depends on the
workload’s working set size and access patterns.

3 Challenges With Chiplets
Runtime systems are an effective solution to the challenges
of parallel computing in modern hardware environments.
At their core, these systems decompose applications into
discrete units of work, or tasks, with well-defined data in-
puts and outputs. Rather than directly calling computation
kernels, developers define tasks and their dependencies, al-
lowing the runtime system to distribute work dynamically
across available compute resources.

The strength of task-based systems lies in their dynamic
scheduling approach: they can integrate detailed information
about task memory footprints, dependencies, and execution
characteristics. This allows for more informed scheduling
decisions, reducing scheduling overheads and improving
the management of memory hierarchies. Such optimizations
are especially relevant for highly parallel tasks, for which
inefficient scheduling can lead to performance degradation
due to load imbalances and NUMA effects.

A chiplet-aware runtime must address several challenges:
(1) Cache management: Unlike memory, users cannot di-
rectly allocate data in chiplet caches. Hence, traditional run-
times that have focused primarily on memory allocation in
NUMA nodes or thread placement based on core availability
and workload distribution need to be extended to consider
the trade-off between cache locality and cache availability
when the cache is partitioned (see §2).
(2) Inter-chiplet communication and synchronization:
The increase in latency between chiplets (described in §2.1)
requires optimized task mapping and scheduling. Runtime
systems must minimize data movement across chiplets, but
also implement efficient and lightweight synchronization
mechanisms to prevent bottlenecks. Traditional thread-based
methods can suffer due to overheads from OS thread creation,
context switching, and management. This can be problematic
for fine-grained tasks as the number of chiplets grows.
(3) Workload adaptation: A single policy cannot address
the diverse needs of all applications: some are latency-bound,
others are memory-intensive, and their working set sizes
can vary during execution. This requires adaptive resource

Chiplet 1

32 MB
L3

CORE    L2
CORE    L2
CORE    L2
CORE    L2

L2   CORE
L2   CORE
L2   CORE
L2   CORE

Chiplet N

32 MB
L3

CORE    L2
CORE    L2

CORE    L2
CORE    L2

L2   CORE
L2   CORE
L2   CORE
L2   CORE

DuckDB

Chiplet-aware Adaptive Controller

Performance Profiler

LocalCache
DistributedCache
...

Events
Collector

Task and Memory Manager:

Task placement & movement
Cache partitioning
Lightweight synchronisation
Collective and parallel operations

Global 
Scheduler

Policy

CHARM

1

3

4

2
CHARM

Fig. 6: CHARM architecture

management (see §2.3). For example, a workload may ini-
tially benefit from high data locality, keeping related data
close. However, as the working set expands, the same work-
load may require increased cache availability to maintain
performance. Effective chiplet-aware runtime systems must
recognize these shifting demands and adjust the resource
allocation accordingly throughout execution.

4 CHARM System Design
We describe the design and implementation of CHARM, a
runtime system for modern chiplet-based CPUs. At its core,
CHARM revolves around two fundamental pillars: (1) light-
weight task management: CHARM implements nimble
mechanisms for fine-grained task execution across chiplets
(see §4.2 and §4.3), seamlessly integrating with contempo-
rary runtime systems; (2) intelligent placement decisions:
CHARM makes informed choices about task movement (see
§4.4) by incorporating chiplet-aware objectives.

To handle the variability of workloads, CHARM adopts
an adaptive approach. It incorporates a lightweight profiling
component that gathers key metrics about task behavior,
including memory access patterns and communication fre-
quency. It then dynamically adjusts task placement at run-
time to adapt to workload changes and system conditions.

4.1 CHARM architecture
The CHARM system is designed with four key components.
As shown in Fig. 6, the architecture includes: (1) a perfor-
mance profiler; (2) an adaptive controller; (3) a memory and
task manager; and (4) a global scheduler.

The performance profiler 1 continuously monitors
and analyzes application performance metrics. Using low-
overhead instrumentation, CHARM collects detailed data
on computational load and communication patterns. Dur-
ing workload execution, it periodically checks the frequency



CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

of accesses to the local chiplet, remote chiplets, and main
memory. This helps determine the cache availability. The
profiler can also monitor only specific code segments, pro-
viding detailed and accurate results for individual tasks or
threads with minimal overhead.

The adaptive controller 2 gathers information from the
profiler and uses predefined approaches to generate sched-
uling policies. An approach outlines the general method or
guiding principle, while a policy specifies the concrete ac-
tions the scheduler follows based on that approach. For ex-
ample, a location-centric approach may focus on minimizing
cross-chiplet communication, while the corresponding pol-
icy dictates the assignment of tasks to cores within the same
chiplet. These predefined approaches can be extended to
create more precise policies tailored to workload require-
ments. In our prototype system, the controller generates
adaptive policies that switch between location- and cache
size-centric approaches. These policies dynamically balance
the benefits of local cache accesses with the need for larger
aggregate cache sizes. This adaptive partitioning approach
allows CHARM to respond to evolving workload demands,
ensuring high performance and efficiency.

The task and memory manager 3 handles tasks from
the user application using lightweight coroutines. Coroutines
are allocated or shifted to specific CPU cores, enabling the
management of numerous concurrent tasks and enhancing
parallel execution and overall application throughput. The
system supports NUMA-aware allocation to optimize main
memory access patterns. Barrier synchronization mecha-
nisms also coordinate task execution across multiple chiplets.

Finally, the global scheduler 4 coordinates task distribu-
tion and load balancing across available compute resources. It
receives policies from the adaptive controller and interfaces
with the task and memory manager to obtain lightweight
coroutines representing individual tasks. It also maintains a
global system view and can quickly respond to changes in
workload patterns by receiving new policies and migrating
tasks between chiplets as needed, which ensures that the
system remains optimized under varying conditions. The
global scheduler is not preemptive. Tasks can yield execution
voluntarily at well-defined points, such as when waiting for
data. The scheduler strives to preserve the initial task-to-
worker-to-core mapping as much as possible.

CHARM differs from centralized scheduling paradigms
by decentralizing the decision-making process: each worker
thread independently monitors its own performance metrics.
Based on these local observations (e.g., the rate of remote
cache accesses), each worker decides autonomously whether
to adjust its CPU affinity to spread across more chiplets or to
concentrate on fewer. It then informs the task manager and
global scheduler to enact this change. This approach elimi-
nates global data collection and centralized decision-making,
thereby reducing overheads and improving responsiveness.

Algorithm 1 Chiplet Scheduling Policy
1: procedure ChipletScheduling
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ← steady_clock.now()
3: 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒

4: if 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ≥ SCHEDULER_TIMER then
5: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← getEventCounter() ⊲ Cache fill events
6: 𝑟𝑎𝑡𝑒 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 × SCHEDULER_TIMER/𝑒𝑙𝑎𝑝𝑠𝑒𝑑
7: if 𝑟𝑎𝑡𝑒 ≥ RMT_CHIP_ACCESS_RATE then
8: if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 < CHIPLETS then
9: 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 ← 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 + 1

10: end if
11: else
12: if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 > 1 then
13: 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 ← 𝑠𝑝𝑟𝑒𝑎𝑑_𝑟𝑎𝑡𝑒 − 1
14: end if
15: end if
16: updateLocation() ⊲ Spread or compact on chiplets
17: 𝑡𝑖𝑚𝑒 ← steady_clock.now()
18: resetEventCounter()
19: end if
20: end procedure

4.2 Chiplet-aware task scheduling policy
Maximizing cache utilization is important for achieving high
performance on chiplet-based systems with complex mem-
ory hierarchies. To this end, CHARM incorporates heuristics
to improve cache affinity when scheduling and migrating
tasks. These heuristics aim to keep related data and compu-
tations co-located to minimize expensive data movements.
To handle more dynamic workloads, CHARM also imple-
ments an adaptive cache partitioning scheme. This scheme
monitors the cache usage of different task types and adjusts
the allocation of cache resources to maximize overall system
throughput. The partitioning is periodically refined based
on runtime performance measurements.

The Chiplet Scheduling Policy (Alg. 1) governs this
adaptive behavior. The algorithm operates periodically on
a per-worker basis. It begins by checking the time elapsed
since the last decision. If enough time has passed, the worker
retrieves its local cache fill event counter, which tracks re-
mote memory accesses. It then calculates the rate of these
accesses and compares it to a predefined threshold. This
threshold can vary depending on the approach used, e.g., a
higher value would delay changes to the scheduling.

CHARM implements a decentralized scheduling paradigm
in which each worker thread independently decides on mi-
gration based on local observations. Specifically, each worker
employs a local parameter, spread_rate, to configure the
number of chiplets to distribute its tasks to. spread_rate is
initialized to one. When the remote access rate exceeds the
threshold, the worker increments its spread_rate to expand
the footprint across more chiplets for larger dedicated cache
capacity. Conversely, if the rate is low, the worker decre-
ments the value to consolidate its tasks onto fewer chiplets,
thus improving data locality with other threads.



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

Algorithm 2 Update Task Location
1: procedure UpdateLocation
2: if spread_rate ∉ (0,CHIPLETS] or THREAD_SIZE ≥

spread_rate × CORES_PER_CHIPLET then
3: return ⊲ Bounds check
4: end if
5: chiplet←

⌊
unique_worker_ID

CORES_PER_CHIPLET/spread_rate

⌋
6: slot← unique_worker_ID mod

(
CORES_PER_CHIPLET

spread_rate

)
7: if chiplet ≥ CHIPLETS then
8: chiplet← chiplet mod CHIPLETS
9: slot← slot +

⌊
unique_worker_ID

CORES_PER_CHIPLET

⌋
10: end if
11: core← chiplet × CORES_PER_CHIPLET + slot
12: set_thread_affinity(core) ⊲ Set affinity
13: numa_node←

⌊
core

CORES_PER_NUMA_NODE

⌋
14: set_mempolicy(MPOL_BIND, 1 ≪ numa_node) ⊲ Set memory

policy
15: end procedure

Such a decentralized approach prevents resource con-
tention without a central arbiter. After updating a worker’s
spread_rate, the algorithm invokes UpdateLocation() to
calculate a unique deterministic core assignment. This en-
sures a final collision-free core mapping, as described below.

4.3 Adaptive cache partitioning
The value of spread_rate is determined by the following
trade-off; on the one hand, consolidating tasks by reducing
the spread enhances data locality, which is ideal for work-
loads with high data sharing; on the other hand, spreading
tasks by increasing the rate provides a larger aggregate cache,
which is better suited for workloads with large, independent
data sets. The UpdateLocation algorithm (Alg. 2) is respon-
sible for making this decision, translating the high-level pol-
icy described in §4.2 into a collision-free task placement.

The algorithm first performs a sanity check to prevent in-
valid remappings. It ensures that the spread_rate is within
the valid range of physical chiplets and the resulting config-
uration provides sufficient unique physical cores to accom-
modate all worker threads. This check is important, because
CHARM dedicates one physical core to each worker thread to
prevent resource contention. For example, given 64 worker
threads and a chiplet with 8 cores, a spread_rate of 1 is
invalid, because it is impossible to map 64 threads to 8 dedi-
cated cores on a single chiplet. If this check fails, the worker’s
migration is skipped, its core affinity remains unchanged,
and it simply retries the evaluation in the next timer cycle.

If the check passes, the algorithm calculates the target
chiplet and core slots for each worker. Since each worker is
assigned a unique ID, the resulting (chiplet, slot) pair is also
unique, guaranteeing a deterministic and collision-free core
assignment. The algorithm then sets the thread’s affinity and
binds its memory allocation to the corresponding NUMA
node, taking precedence over the OS’s NUMA balancing to

minimize remote memory accesses. Note that, to minimize
the impact of data migration, CHARM performs such updates
upon task completion and only when significant inefficiency
is detected. The combination of these two algorithms allows
CHARM to adjust its task distribution strategy dynamically
based on observed cache usage patterns.

4.4 Fine-grained task parallelism
Traditional OS-managed threads can introduce high over-
heads during context switching and synchronization, which
is particularly severe when managing a high volume of tasks
across multiple chiplets.

To overcome these challenges, CHARM implements a
lightweight concurrency system that combines features of
user-level threads and coroutines. Analogous to user-level
threads, CHARM tasks have their own scheduler, individ-
ual stacks for each execution unit, and state management.
This design allows CHARM to handle task movement across
chiplets efficiently, managing execution contexts indepen-
dently of the OS. At the same time, CHARM incorporates
coroutine-like behavior, particularly the ability to suspend
and resume execution at developer-defined points, similar to
the concurrency model used in the RING runtime system [25].
For example, when a coroutine yields, CHARM’s integrated
profiling system activates and analyzes task behavior, mem-
ory access patterns, and inter-chiplet communication. The
profiling data enables CHARM to adjust task placement
across chiplets dynamically, thus optimizing cache locality
and minimizing remote memory accesses in real-time.

Within each core, CHARM maintains a local task queue
designed for low-overhead operation. Using lock-free mech-
anisms based on atomic operations, tasks are enqueued and
dequeued efficiently by multiple worker threads, avoiding
costly synchronization delays. When a coroutine yields or
completes, the worker thread checks its local queue for pend-
ing tasks. If the worker’s local task queue is empty, it uses
a work-stealing approach by attempting first to steal tasks
from cores on the same chiplet before considering other
chiplets. This strategy helps preserve cache locality, which
is critical for efficient chiplet-based systems.

4.5 Performance profiling and optimization
Monitoring in CHARM provides real-time insights into the
system performance, enabling dynamic adjustments to the
scheduling and memory management policies. It collects
performance data in user space, which minimizes context
switches and overheads. CHARM provides a set of perfor-
mance counters that can be used to monitor various met-
rics, such as cache misses, memory bandwidth utilization,
and task execution times. To achieve this, CHARM uses
libpfm [7] and relies on existing performance monitoring
unit (PMU) counters to collect profiling data, which avoids



CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

manual code instrumentation and ensures minimal over-
head. This overhead, which can be around 5–10%, corre-
sponds to high-frequency polling; users, however, can cus-
tomize this frequency to reduce impact, making it suitable
for a wider range of use cases in which a different bal-
ance between insights and performance is needed. More
specifically, CHARM tracks chiplet cache fill rates using
ANY_DATA_CACHE_FILLS_FROM_SYSTEM on AMD systems and
OFFCORE_RESPONSE on Intel systems to distinguish fills from
on-chip (intra-CCX), on-die (inter-CCX), and remote mem-
ory sources (inter-NUMA). On Intel systems, we configure
event filter masks that target last level cache (LLC) hits and
DRAM responses from local and remote sources. These coun-
ters, while limited in granularity, enable us to differentiate
communication across chiplets and NUMA boundaries.

4.6 Implementation and API
CHARM is implemented as a C++ software framework that
enables efficient mapping and execution of applications on
chiplet-based CPUs. Based on the work of Grappa [31] and
RING [25], the design is highly modular, with separate com-
ponents handling different aspects of the system, such as
task scheduling, memory management, communication, and
profiling. Each component can be reused, reconfigured, or re-
placed independently, which allows for a high degree of cus-
tomization and optimization tailored to specific application
requirements. Specifically, CHARM adds a real-time profiler,
a scheduler aware of chiplet constraints, coroutine support,
and a work-stealing mechanism. We have kept RING’s origi-
nal API and task/RPC model.

CHARM targets single-application scenarios in which the
source code is available and assumes exclusive hardware ac-
cess to maximize resource utilization and avoid contention.
Although this simplifies scheduling, recent work suggests
that chiplet-aware strategies can also benefit multi-tenant,
shared-nothing environments [9]. CHARM assumes a sym-
metric chiplet layout with uniform memory access and does
not model chiplet-to-memory-controller distances, because
many architectures integrate memory controllers within
chiplets to mitigate such effects.

CHARM provides developers with a straightforward and
efficient API for parallel programming on chiplet-based ar-
chitectures. CHARM is initialized using CHARM_Init() and
cleaned up with CHARM_Finalize(). Developers can define
parallel tasks using lambda functions within the run() func-
tion. CHARM offers various task execution methods, includ-
ing all_do() for executing a task on all cores, and call()
for remote procedure calls with both synchronous and asyn-
chronous options. When executing these tasks, developers
can focus on application logic while CHARM handles the
complexities of chiplet-aware resource allocation, task dis-
tribution, and performance optimization. CHARM also pro-
vides synchronization primitives, such as barrier(), to en-
sure that parallel tasks are coordinated effectively.

CHARM avoids assigning concurrent tasks to hyperthreads
on the same physical core to prevent contention in the L1
and L2 caches. To maintain cache isolation, it treats each
physical core as the smallest independent scheduling unit.
In addition, for multi-level NUMA, CHARM applies a socket-
aware policy: it fully utilizes all cores and chiplets within
one socket before utilizing another. This preserves cache
locality and keeps memory accesses within the same NUMA
domain, minimizing costly inter-socket communication.

Before reporting our evaluation of CHARM, we perform
a sensitivity analysis that systematically varies the candi-
date threshold value and measures its impact on key per-
formance metrics, including throughput, latency, and cache
utilization. Based on this analysis, we determine that an
RMT_CHIP_ACCESS_RATE of 300 events per SCHEDULER_TIMER
interval provides the best balance of performance across our
experimental scenarios. This threshold effectively triggers
task redistribution when inter-chiplet communication be-
comes excessive, while also allowing sufficient task consoli-
dation to benefit from cache locality.

All experiments use a SCHEDULER_TIMER interval of 500 ms,
which is chosen to balance profiling overhead and responsive-
ness. This interval is short enough to capture access pattern
changes without interfering with execution. The scheduler
runs periodically and preserves initial task-to-core mappings
unless profiling reveals issues, such as remote chiplet access
or cache contention. When adaptation is needed, CHARM
rebalances tasks incrementally in a topology-aware manner,
minimizing data movement and preserving affinity. It fol-
lows a hierarchical approach: expanding execution outwards
to nearby chiplets as working sets grow and contracting
inwards when locality can be regained.

5 Evaluation
We conduct experiments to evaluate CHARM’s efficacy on
modern chiplet-based architectures over a range of bench-
marks and applications. In particular, we address the follow-
ing questions:

Q1: How does CHARM’s performance compare to existing
runtime systems, such as RING [25], and NUMA-aware
schedulers, such as AsymSched and SAM, across a range
of computational tasks? (§5.2)

Q2: Does CHARM keep the performance advantage across
different processor architectures (e.g., AMD/Intel)? (§5.3)

Q3: What are the performance trade-offs and scalability
characteristics of CHARM compared to optimized NUMA-
aware systems on chiplet-based architectures? (§5.4)

Q4: Does CHARM exploit the heterogeneity of chiplet-based
architectures to accelerate irregular workloads, such as
graph processing and sparse linear algebra? (§5.5)

Q5: How does CHARM accelerate data-intensive analytical
workloads? (§5.6)



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

5.1 Experimental setup

Testbed. We have conducted experiments on two platforms:
1. a dual-socket AMD EPYC Milan 7713 processor. Each

socket features 64 CPU cores, 512 GB RAM and 8 chiplets;
each chiplet is equipped with a 32 MB local L3 cache.
The codebase is compiled with GCC 12 with the -O3
optimization flag, running on Ubuntu Linux 23.04.

2. a dual-socket Intel Xeon Platinum 8488C processor, with
each socket housing 48 cores (96 threads), 512 GB of
RAM, and a shared 105 MB L3 cache. The system oper-
ates on Ubuntu Linux 22.04.5 LTS, and the codebase was
compiled using GCC 12 with the -O3 optimization flag.

While ARM-based processors (e.g., the Neoverse N1) be-
come more common on cloud platforms, their architecture
makes them less relevant to this work. The Neoverse N1
design concentrates all compute cores on a single chiplet,
giving a monolithic layout. Since prior work has shown that
such designs have minimal sensitivity to chiplet-aware sched-
uling strategies [9], we focus our evaluation on platforms
for which these optimizations are most relevant.
Baselines. We compare the performance of CHARM against
four systems:
1. RING [25] is a NUMA-aware, message-batching runtime

system designed for high-performance and in-memory
data-intensive workloads.

2. SHOAL [17] is a runtime system that provides an array
abstraction for optimized memory allocation and access
patterns on NUMA multi-core architectures.

3. AsymSched [41] is a bandwidth-centric NUMA scheduler
designed to optimize thread and memory placement with
asymmetric interconnects.

4. SAM [38] is a multicore CPU scheduler for modern multi-
programmed machines that mitigates performance issues
from data sharing and contention by identifying latency
tolerances and incorporating hyperthreading awareness.

Benchmarks.To evaluate CHARM and the baseline systems,
we use workloads from four domains: (i) graph processing;
(ii) high performance parallel processing; (iii) statistical an-
alytics; and (iv) database management. Specifically, we use
the following benchmarks and applications1:
• RandomAccess evaluates non-contiguous memory ac-

cesses in a distributed shared memory architecture, mea-
sured in global updates per second (GUPS).
• Graph algorithms have irregular access patterns. We use

five graph algorithms: Breadth-First Search (BFS) [26],
Connected Component (CC) [48], Single Source Shortest
Path (SSSP) [40], PageRank (PR) [1], and Graph500 [27].
The graph is a Kronecker graph model with 224 vertices
and 16× 224 edges, of approximately 4 GB.

1For reproducibility, the source code and all artifacts presented in this paper
are available at https://github.com/Alessandro727/CHARM.

• Statistical analytics uses stochastic gradient descent (SGD)
on a dataset with 10,000 samples and 8,192 features, total-
ing approximately 6,250 MB. For this evaluation, we use
DimmWitted, an analytics engine optimized for statisti-
cal computations on modern NUMA architectures [51].
• OLAP evaluates TPC-H [43], with a scale factor of 100,

using the DuckDB [35] engine with and without the
CHARM adaptive controller module.
• OLTP evaluates YCSB [6] and TPC-C [42] using the ER-

MIA engine [19]. YCSB is configured with 50 million
records in a single table, running a mixed workload of
45% read and 55% read-modify-write operations. TPC-C
simulates 50 warehouses with a workload of 45% New
Order, 43% Payment, and smaller proportions of Delivery,
Order Status, and Stock Level transactions. It supports
cross-partition transactions, uses a uniform item distri-
bution, and always accesses the home warehouse. The
implementation includes 10,000 suppliers without spe-
cialized scan optimizations for Order Status.
• Streamcluster [50] runs compute-intensive clustering al-

gorithms sensitive to memory access patterns. We use it
to compare CHARM with SHOAL[17] in parallel process-
ing scenarios on shared-memory multicore architectures.
Streamcluster provides insights into working sets, local-
ity, data sharing, synchronization, and off-chip traffic.
Experiments process 1 million data points with 128 di-
mensions, targeting 10–20 cluster centers, and allowing
up to 5,000 intermediate centers, with data chunked into
200,000-point batches.

Integration. Integrating CHARM into target applications is
straightforward and requires only minimal code refactoring.
It involves: (i) linking the CHARM library; (ii) initializing its
components at startup; and (iii) wrapping existing task logic
with CHARM’s API.

For example, the integration with DimmWitted only re-
quires identifying task boundaries with the Charm::call in-
terface, without significant refactoring. In contrast, DuckDB’s
more complex architecture requires modifying the scheduler
to leverage CHARM’s profiler and adaptivity.
Measurements. We measure three performance metrics:
(i) throughput; (ii) speedup of CHARM over baseline sys-
tems; and (iii) memory bandwidth utilization. The results
are averages over 10 runs. All experiments are conducted on
the AMD-based machine unless stated otherwise.

We also decompose tasks for all benchmarks: graph analyt-
ics (e.g., BFS, PageRank, Connected Components) generates
tasks dynamically per active frontier node; DimmWitted
partitions workloads into hundreds of fine-grained chunks
across over 600 threads. Execution times vary by workload
and input size. We evaluate CHARM across diverse dataset
sizes and runtimes. Graph benchmarks run until full traversal
or convergence, ranging from seconds to minutes depending
on the graph scale.

https://github.com/Alessandro727/CHARM


CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

20 40 60 80 100 120
Number of Cores

0

500

1000

1500

2000

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(a) Breadth-First Search (BFS)

20 40 60 80 100 120
Number of Cores

0
100
200
300
400
500
600
700

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(b) PageRank (PR)

20 40 60 80 100 120
Number of Cores

0

200

400

600

800

1000

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(c) Connected Component (CC)

20 40 60 80 100 120
Number of Cores

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(d) Single Source Shortest Path (SSSP)

20 40 60 80 100 120
Number of Cores

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(e) RandomAccess (GUPS)

20 40 60 80 100 120
Number of Cores

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(f) Graph500

Fig. 7: Graph Processing + Random Access Scalability on AMD machine (Marker sizes are scaled to represent the variance.)

5.2 Overall effectiveness and efficiency
We first investigate the overall effectiveness and efficiency
of CHARM. We examine the scalability of the processing
throughput of six algorithms: Breadth-First Search (BFS);
PageRank (PR); Connected Component (CC); Single Source
Shortest Path (SSSP); RandomAccess (GUPS); and Graph500.
We compare CHARM’s scalability against the baselines of
RING, AsymSched, and SAM.

Fig. 7 shows the results. We observe that CHARM achieves
near-linear scaling, up to 64 cores, consistently outpacing all
baselines. Beyond 64 cores, its growth tapers slightly as our
scheduler fills all chiplets within one socket before assigning
tasks to the other, temporarily unbalancing core assignments
across sockets. Bandwidth utilization, however, rebounds
between 96 and 104 cores once the imbalance decreases. In
contrast, RING, AsymSched, and SAM all saturate around
48–56 cores, reflecting their limitation in fully exploiting
intra-chiplet memory bandwidth. Since these systems all rely
on NUMA-aware policies, they offer similar performance
and lack the fine-grained chiplet locality of CHARM.

With 64 cores, RING, AsymSched and SAM peak, and
the most pronounced improvements appear in BFS, CC,
and SSSP: CHARM delivers 1.8×, 1.9×, and 2.3× speedups
over the baselines, respectively. With 96 cores and above,
CHARM’s advantage grows further—to between 2× and
2.8×—as the baselines’ throughput declines under contention.

We attribute CHARM’s performance gain to the advanced
chiplet-aware task scheduling policy to optimize inter-chiplet
communication and the load balancing strategies that exploit
the local L3 cache. While NUMA-aware schedulers avoid re-
mote memory allocation and accesses, they fail to prevent L3
cache access from remote NUMA domains. This results in in-
creased communication overhead (i.e., data movement) when
accessing L3 caches across multiple chiplets and sockets.

The effect becomes more pronounced at higher core counts
across all benchmarks (see Fig. 7). CHARM reduces remote

Tab. 1: Comparison of chiplet accesses (×103) using 64 cores

Application Remote NUMA Chiplet Local Chiplet

CHARM RING CHARM RING

BFS 3 20876 24722 14687
PR 9 55960 78561 39212
CC 84 43718 54631 27924
SSSP 6 230939 153665 87152
GUPS 25 19377 21033 18328
Graph500 93 93196 229608 176853

NUMA chiplet accesses (see Tab. 1) by collocating tasks and
data within local chiplets, avoiding the NUMA-negative ef-
fect. With 64 cores per NUMA node, CHARM fully occupies
each socket, eliminating “free spots” and minimizing cross-
chiplet task movement. In the SSSP benchmark, CHARM
records 1.5 × 108 local accesses versus RING’s 8.7 × 104, and
only 6 × 103 remote accesses compared to RING’s 2.3 × 108.
This balance between task placement and cache locality re-
sults in CHARM’s superior scalability.

In summary, CHARM efficiently leverages chiplet-based
architectures through optimized task scheduling and load
balancing. Its linear scalability in iterative algorithms (e.g.,
PageRank) reflects effective synchronization that minimizes
global update overhead and enhances cross-chiplet paral-
lelism. Similar trends across diverse graph algorithms demon-
strate CHARM’s adaptability to varying computational pat-
terns and data dependencies.

5.3 Efficiency across chiplet-based architectures
Next, we investigate whether CHARM maintains its perfor-
mance advantage across chiplet-based architectures, namely
a dual-socket Intel Xeon Platinum 8488C system. Using the
full suite of graph-processing benchmarks (BFS, PageRank,
Connected Components, SSSP, GUPS, and Graph500) and a



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

20 40 60 80 100
Number of Cores

0
200
400
600
800

1000
1200
1400

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(a) Breadth-First Search (BFS)

20 40 60 80 100
Number of Cores

0

100

200

300

400

500

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(b) PageRank (PR)

20 40 60 80 100
Number of Cores

0

200

400

600

800

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(c) Connected Component (CC)

20 40 60 80 100
Number of Cores

0

50

100

150

200

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(d) Single Source Shortest Path (SSSP)

20 40 60 80 100
Number of Cores

0

500

1000

1500

2000

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(e) RandomAccess (GUPS)

20 40 60 80 100
Number of Cores

0

250

500

750

1000

1250

1500

Th
ro

ug
hp

ut
[M

B/
s] RING

CHARM
ASYMSCHED
SAM

(f) Graph500

Fig. 8: Graph Processing + Random Access Scalability on Intel machine (Marker sizes are scaled to represent the variance.)

0 20 40 60 80 100 120
Number of Cores

0

10

20

Sp
ee

du
p

CHARM
SHOAL

Fig. 9: Scalability analysis of Streamcluster performance:
Shoal compared to CHARM

Tab. 2: Comparison of memory and cache accesses (×103)
between CHARM and SHOAL across core counts

Cores Local Chiplet Local NUMA Remote Chiplet Main Memory

CHARM SHOAL CHARM SHOAL CHARM SHOAL

8 27055 11014 718 9 7037 49222
16 30956 27302 893 3623 6941 41273
32 35099 50054 1179 2528 6634 24832
64 48798 67560 1852 1142 5256 5092

random-access workload, we report throughput and scala-
bility in Fig. 8. Here, CHARM outperforms ASYMSCHED,
RING, and SAM across all benchmarks, by a large margin
up to 48 cores—the capacity of a single socket—when its
chiplet-aware scheduling proves most effective.

Beyond 48 cores, as execution spans sockets, CHARM’s
throughput initially drops then recovers, mirroring the trend
on AMD. The performance gap with ASYMSCHED and RING
narrows in this range, with CHARM maintaining a slight
edge or parity. This reduced advantage is due to architec-
tural differences: AMD employs more chiplets and a higher-
bandwidth interconnect than Intel. SAM consistently un-
derperforms on Intel, as its PMU-based heuristics (e.g., IPC
and coherence activity) are poorly suited to the architectural
intricacies and chiplet-based design features of this platform.

The results across different chiplet-based architectures
suggest that, although Intel Sapphire Rapids offers better
inter-core communication than AMD EPYC Milan, achieving
peak performance still demands a scheduling strategy that
takes the processor’s topology into account.

5.4 Scalability with optimized NUMA-aware systems
To evaluate the effect of chiplet-aware scheduling on parallel
workloads, we run CHARM on the Streamcluster bench-
mark [50]. We compare to SHOAL [17], which optimizes
memory allocation and replication for NUMA systems using
architectural hints (e.g., huge pages and DMA copy engines).

Fig. 9 shows speedups over the execution time of the
Streamcluster workload without any architecture-aware run-
time support, across 1 to 128 cores. CHARM achieves a peak
speedup of 21×with 24 cores, while SHOAL reaches 16×with
32. The largest gap appears with 16 cores, where CHARM
outperforms SHOAL by 2×, and CHARM maintains its lead
until 40 cores. Beyond that, CHARM and SHOAL’s speedups
gradually drop to 1× due to high parallelism that fragments
the input across too many worker threads. This shrinks each
thread’s workload to the point at which scheduling optimiza-
tions yield negligible benefits.

These trends highlight key architectural differences. SHOAL
assigns tasks sequentially to cores (e.g., task 0 to core 0),
which works well for NUMA but underutilizes chiplet-based
designs such as AMD EPYC Milan. With 16 cores, SHOAL
only uses 2 of 8 chiplets—accessing just 64 MB of L3 cache
instead of the full 256 MB—limiting performance. In this ex-
periment, we use 1 million points, each with 128 dimensions;
each dimension is a 4-byte floating-point number, resulting
in a total dataset size of approximately 512 MB, which far
exceeds the cache capacity of two chiplets.

Tab. 2 corroborates this: with 8 cores, SHOAL incurs over
7×more main memory accesses than CHARM. With 16 cores,
its inter-chiplet traffic increases due to frequent task and data
movement across two chiplets. CHARM, by contrast, main-
tains balanced, locality-aware scheduling with most accesses
served from local caches. With 32 cores, SHOAL’s remote
chiplet accesses surge, while CHARM preserves efficient
data locality. With 64 cores, the memory access patterns of
both systems converge, indicating similar levels of hardware
utilization at high parallelism.



CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

BFS PR CC SSSP GUPS Graph500
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

RI
N

G

19 MB 79 MB 320 MB 1,325 MB 5,300 MB

(a) 32 Cores

BFS PR CC SSSP GUPS Graph500
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

RI
N

G

19 MB 79 MB 320 MB 1,325 MB 5,300 MB

(b) 64 Cores

Fig. 10: CHARM’s speedups over RING, varying graph sizes

5.5 Sensitivity analysis
In this section, we assess the sensitivity of CHARM’s perfor-
mance with respect to: (i) the data sizes of workloads and
(ii) the irregular access patterns.
Data size. We evaluate CHARM’s performance across five
graph algorithms and GUPS (§5.1) at different sizes by con-
trolling the number of vertices, ranging from 19 MB (16 ver-
tices) to 5,300 MB (24 vertices). We measure the speedup over
RING with 32 (4 chiplets) and 64 (8 chiplets) cores.

As shown in Fig. 10, CHARM consistently outperforms
RING across all benchmarks and core counts. Speedup re-
mains stable as graph size increases, indicating that CHARM
is influenced more by working set size rather than the total
data size. The performance peaks as long as the working
set fits within the cache. With 32 cores, CHARM performs
best at 79 MB and 320 MB, particularly for SSSP, GUPS, and
Graph500, as these sizes align with the L3 cache capacity of
AMD EPYC Milan CPUs. With 64 cores, CHARM achieves
even greater speedups due to RING’s limited scalability and
CHARM’s balanced task placement across chiplets.

In summary, CHARM’s adaptive runtime efficiently man-
ages data placement and scheduling, leveraging partitioned
L3 caches while minimizing inter-chiplet data movement.
This flexibility enables CHARM to sustain high performance
across diverse graph sizes and core counts.
Irregular access patterns. Next, we investigate the impact
of irregular data and memory access patterns on CHARM’s
performance. We evaluate CHARM using a stochastic gra-
dient descent (SGD) algorithm [3] for logistic regression on
a dataset with 10,000 samples and 8,192 features, totaling
approximately 6,250 MB. To this end, we run the CHARM
runtime on top of DimmWitted [51], an analytics engine

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of cores

40

60

80

100

120

140

Th
ro

ug
hp

ut
[G

B/
s]

DW per core
DW per machine
DW per NUMA node
DW + CHARM
DW + CHARM + std::async

(a) Logistic loss calculation

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of cores

20

40

60

80

100

Th
ro

ug
hp

ut
[G

B/
s]

DW per core
DW per machine
DW per NUMA node
DW + CHARM
DW + CHARM + std::async

(b) Gradient computation and model update

Fig. 11: SGD for logistic regression model

optimized for statistical computations on modern NUMA ar-
chitectures (noted as DW+CHARM). In addition, we compare the
performance of CHARM against four baselines, including
native task scheduling schemes of DimmWitted (DW):
• DW-per-core: assigns one task per CPU core, maximiz-

ing parallelism;
• DW-NUMA-node: allocates one task per NUMA node. It

maintains a mutable state for each NUMA node, mini-
mizing inter-node communication; and
• DW-per-machine: single task for the machine.

We also use another baseline:
• DW+CHARM+std::async: employs OS-level task schedul-

ing to replace CHARM’s coroutines using standard
C++ std::async compiled with GCC 12 and -O3.

We measure the throughput of the loss function and gradi-
ent calculation of the SGD algorithm for DimmWitted+CHARM

and all the baselines, with core counts ranging from 8 to
128. Throughout this section, throughput denotes the rate at
which the SGD kernel processes application data (in GB/s),
not the sustained DRAM bandwidth of the platform. Each
epoch touches the 6 GB input multiple times (loss evaluation
and gradient computation), so the logical data volume moved
through the compute pipeline far exceeds the dataset’s static
size. Moreover, the 6 GB working set already surpasses the
combined 32 MB × 8 = 256 MB L3 capacity per socket, ensur-
ing sustained pressure on each chiplet’s cache and memory
subsystem. We validate the same effect at scale with DuckDB
in §5.6, which uses an order-of-magnitude larger input.

Fig. 11 shows the results. CHARM, i.e., DimmWitted+CHARM,
improves the performance of DimmWitted with increas-
ing core counts for the logistic loss calculation (Fig. 11a),
with throughput peaking at 165 GB/s. Note that DimmWitted+
CHARM+std::async results in a notable drop in throughput
due to the overhead of std::async. Among DimmWitted’s



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [sec]

0

10

20

30

Th
re

ad
Co

un
t

(a) DimmWitted

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [sec]

0

10

20

30

Th
re

ad
Co

un
t

(b) CHARM

Fig. 12: Thread concurrency during SGD with 32 cores and
10,000 exponents

native strategies, DimmWitted-NUMA-node delivers the best per-
formance, reaching 50 GB/s. However, none of the native
strategies scale well with increasing core counts.

The same trend is observed in the gradient computation,
as shown in Fig. 11b. The throughput almost remains con-
stant for all DimmWitted-native scheduling schemes with
increasing core counts. DimmWitted-NUMA-node delivers the
best performance again, reaching 40 GB/s with 64 cores. The
baseline DimmWitted+CHARM+std::async performs even worse
than DimmWitted-NUMA-node, with throughput of 28 GB/s with
64 cores. CHARM (i.e., DimmWitted+CHARM) significantly boosts
throughput, reaching up to 106 GB/s with 64 cores.

We attribute CHARM’s superior performance to two rea-
sons: (i) the chiplet-aware task placement and (ii) the light-
weight coroutine implementation. For reason (i), as already
analyzed in §5.2 and §5.4, CHARM’s global scheduler en-
hances data locality within chiplets, optimizing cache usage
and minimizing main memory access.

We also highlight the significant performance boost from
reason (ii)—CHARM’s use of coroutines, especially for the
gradient computation and model updates. Unlike DimmWit-
ted’s reliance on std::async by mapping each task to a
separate thread, CHARM’s coroutines run multiple tasks on
a single thread and, therefore, significantly reduce the over-
head. Fig. 12 shows the thread concurrency during SGD exe-
cution with and without CHARM. In particular, DimmWitted
shows an average thread count of 16.2 that fluctuates con-
sistently, resulting in overheads of context switching and
poor synchronization. In contrast, Fig. 12b shows a stable
thread count for CHARM, with an average of 31.1 due to its
controlled manner of concurrency management.

The main limitation of std::async is that it blocks threads,
often requiring the creation of more threads to manage tasks.
In contrast, CHARM uses cooperative multitasking, allowing
coroutines to yield without blocking, thus running multiple
tasks on the same thread. For example, while DimmWitted
creates 641 threads on 32 cores, CHARM used only 34, re-
ducing thread creation overheads. In addition, std::async

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
tim

e
[s

ec
.] DuckDB

DuckDB + CHARM

Fig. 13: TPC-H queries on DuckDB

relies on OS-level thread switching, which is slower than
CHARM’s lightweight user-space context switching, which
results in faster task execution.

5.6 Performance on OLAP
We evaluate CHARM’s impact on OLAP workloads by inte-
grating it into DuckDB [35] by overriding its task schedul-
ing and thread mapping. Using TPC-H at scale factor 100,
we compare DuckDB+CHARM to unmodified DuckDB on 8 cores
(equal to one chiplet). The 8-core limit ensures execution
time remains long enough to observe CHARM’s impact on
throughput, as higher core counts reduce the execution time,
making it too short for meaningful analysis.

Fig. 13 shows the execution time for each TPC-H query.
All queries benefit from CHARM’s chiplet-aware runtime, re-
sulting in a reduced execution time with negligible overhead.
The most notable gains appear in queries using hash-joins
and inner-joins on large tables (e.g., Q3, Q4, Q5, Q7, Q9,
Q10), with speedups ranging from 1.2× to 1.5×. For exam-
ple, Q21—featuring multiple joins on the lineitem table—
achieves a 1.3× speedup due to CHARM keeping frequently
accessed data within the same chiplet, enhancing cache reuse
and reducing traffic.

These gains stem from CHARM’s adaptive controller, which
distributes threads across chiplets to exploit aggregate L3
cache capacity for large joins (also improving Q8, Q19, Q20).
For queries with smaller working sets (e.g., Q1, Q2, Q6, Q11),
CHARM compacts threads onto fewer chiplets, minimizing
inter-chiplet communication and improving locality. In con-
trast, Q18—dominated by hash group-by operations—shows
limited improvement due to uneven data distribution across
chiplets, which hampers cache optimizations. As for scalabil-
ity, increasing the thread count narrows the performance gap
between DuckDB and DuckDB+CHARM, because DuckDB’s ran-
dom distribution eventually utilizes all cores across chiplets.

While CHARM is designed primarily for data-parallel
workloads with substantial per-task computation, we also ob-
serve benefits at smaller scales, for example, in OLAP queries
whose tasks process 2–4 MB of data and run for less than one
second. Although we do not define a strict lower bound on
task granularity, our results show that short-lived tasks bene-
fit from CHARM’s locality-aware scheduling for moderately
sized working sets. CHARM’s profiling interval is also con-
figurable to adapt to short-lived or fine-grained workloads.



CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

In conclusion, CHARM adjusts thread placement based
on runtime behavior and query type: join-heavy queries
with large working sets trigger expansion across chiplets
for bandwidth and caches; scan/filter-heavy queries benefit
from consolidation within a chiplet to preserve locality [9].

5.7 Performance on OLTP
Finally, we investigate the impact of CHARM’s chiplet-aware
scheduling on database performance, i.e., online transaction
processing (OLTP) workloads. We modify ERMIA [19], a
memory-optimized OLTP system, to examine the trade-off of
the CHARM runtime between maximizing cache locality and
increasing available cache size across multiple chiplets. In
particular, we adapt ERMIA’s scheduling schemes to two dis-
tinct policies: LocalCache and DistributedCache. ERMIA
is tightly coupled with its own internal thread management
and does not expose sufficient hooks for external schedulers
to influence task placement or execution policies. This limits
our ability to integrate CHARM’s adaptive runtime logic
without invasive modifications to the engine’s core.

LocalCache improves cache locality by limiting opera-
tions to cores within a few chiplets, reducing inter-chiplet
communication but restricting L3 cache size. In contrast,
DistributedCache spreads operations across more chiplets,
increasing cache capacity but with higher communication
overheads. These static policies approximate CHARM’s dy-
namic task mapping, enabling us to assess the benefits of
chiplet-aware scheduling without major changes to ERMIA’s
architecture. We evaluate their performance at different core
counts using the YCSB [6] and TPC-C [42] benchmarks.

While this approach does not directly evaluate CHARM’s
adaptive logic, the experiment remains informative for three
reasons: (i) the throughput gap between the two static poli-
cies quantifies the intrinsic sensitivity of a real OLTP system
to chiplet-level placement. (ii) It establishes a concrete per-
formance envelope: the gap between the two policies reveals
the potential optimization headroom, while the stronger-
performing policy sets a practical performance target that
adaptive schedulers such as CHARM must surpass. (iii) By
comparing results across YCSB and TPC-C, it evaluates if a
single static policy can be universally optimal, or if the best
strategy is fundamentally dependent on the application’s
specific workload characteristics.

The YCSB workload, with its 45% read and 55% read-
modify-write operations on a single table, is well-suited for
assessing how frequent read-modify-write operations influ-
ence cache locality and communication overhead. In contrast,
TPC-C’s more complex mix of transactional operations and
cross-partition accesses evaluates whether increased cache
size can benefit workloads with more diverse access patterns,
despite the extra communication overhead.

As shown in Fig. 14, YCSB (Fig. 14a) and TPC-C (Fig. 14b)
show nearly identical performance between LocalCache
and DistributedCache scheduling policies across all core

8 16 24 32 40 48 56 640

10

20

30

40

Co
m

m
its

/s
[1

06
]

LocalCache
DistributedCache

(a) YCSB

8 16 24 32 40 48 56 640

200

400

600

800

Co
m

m
its

/s
[1

03
]

LocalCache
DistributedCache

(b) TPC-C

Fig. 14: Commit per seconds for various scheduling policies

counts. This is because OLTP workloads, characterized by
short transactions with frequent commits and synchroniza-
tions, are less affected by cache locality or larger aggregated
cache sizes. Instead, OLTP performance is often limited by
commit latency, synchronization overhead, and maintained
ACID properties, with frequent inter-thread communication
and disk I/O overshadowing cache optimization benefits.

Consequently, our experiment leads to a clear conclu-
sion: for high-contention OLTP workloads such as YCSB
and TPC-C, chiplet-level scheduling policies have a negli-
gible impact on performance. The system’s sensitivity to
cache placement is dwarfed by transactional overheads. This
result implies that, for this type of application, there is no
workload-dependent optimal policy, because performance
is fundamentally indifferent to the underlying chiplet topol-
ogy. Our findings therefore help delineate the boundaries
of applicability for chiplet-aware scheduling, showing that
such techniques offer little performance gain for systems bot-
tlenecked by synchronization and commit protocols rather
than memory hierarchy effects.

6 Related Work
Profiling-based NUMA-aware schedulers. Modern run-
time systems (e.g., SAM [38] and AsymSched [41]) monitor
hardware performance to optimize scheduling and place-
ment decisions for multicore architectures. SAM targets tra-
ditional multi-socket NUMA systems, aiming to reduce cache
and memory contention in multiprogramming; AsymSched
focuses on optimizing bandwidth utilization (e.g., hop count)
in asymmetric connections. Both, however, fail to fully ex-
ploit chiplet-based systems: AsymSched offers limited bene-
fit on chiplet-based designs with uniform interconnects and
SAM’s profiling events are ill-suited for chiplet-based ar-
chitectures. In addition, they require centralized and global
coordination for placement decisions. In contrast, CHARM
uses a decentralized model: each thread independently mon-
itors local and remote memory accesses and dynamically



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

requests that the global scheduler adjust its placement via
the UpdateLocation function.
Cache Partitioning. has been widely studied to reduce
interference for sharing the LLC. Intel’s CAT [15] enables
hardware-based partitioning, with further possible improve-
ments to performance isolation and QoS [37, 47], although
these rely on static schemes. Dynamic methods such as
UCP [34] and TADIP [16] adapt cache management based
on application behavior, but overlook the impact of chiplets.
Cache-aware scheduling. Guan et al. explore cache-aware
task scheduling for real-time systems, focusing on partition-
ing caches to reduce interference between tasks in multi-
core environments [11]; Gracioli et al. review cache manage-
ment techniques in real-time embedded systems [10]. Recent
work has also explored runtime support for emerging chiplet-
based architectures. Chirkov et al. evaluate interconnect per-
formance and introduce Meduza, a write-update coherence
protocol for chiplet systems [4].
Adaptive scheduling. Existing work has explored adaptive
task scheduling in NUMA systems. OmpSs [5] schedules
dependent tasks dynamically by prioritizing critical tasks on
fast cores. Psaroudakis et al. [33] propose tracking socket-
level utilization for adaptive data placement. ATraPos [32]
dynamically repartitions OLTP workloads to reduce cross-
partition transactions and synchronization.
Chiplet-awareness. Prior work has examined the hetero-
geneity of inter-core latencies and memory hierarchies in
chiplet-based systems [44], including architectural studies of
AMD CPUs [29, 39] and energy efficiency improvements [36].
Fogli et al. analyze OLAP performance on chiplet architec-
tures and propose deployment strategies [9], as well as opti-
mizations for high-performance sorting [8].

7 Conclusions
Our research highlights the impact that chiplet-based CPU ar-
chitectures can have on parallel processing and data-intensive
applications. We introduced CHARM, a runtime system that
optimizes task allocation and resource management across
chiplets. Our evaluation shows that CHARM substantially
outperforms state-of-the-art NUMA-aware systems, deliv-
ering up to 3.9× speedup in statistical computation, 2.3×
in graph processing, and consistently strong performance
across a diverse range of memory-intensive workloads.

Our findings are especially beneficial for workloads with
irregular access patterns, because they enable the customiza-
tion of resource allocation policies on novel chiplet-based
processors. This work underscores the need for data-intensive
systems to move beyond conventional NUMA-aware opti-
mizations, embracing task scheduling approaches that fully
exploit the capabilities of modern chiplet-based processors.
Acknowledgments.We sincerely thank our shepherd, Maria
Carpen Amarie, and the anonymous EuroSys reviewers for
their valuable comments and insightful feedback.

References
[1] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale

hypertextual web search engine. In Proceedings of the Seventh Interna-
tional Conference on World Wide Web. 107–117.

[2] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K
Aguilera. 2017. Black-box Concurrent Data Structures for NUMA
Architectures. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (Xi’an China). ACM, New York, NY, USA.

[3] Bob Carpenter. 2008. Lazy Sparse Stochastic Gradient Descent for Reg-
ularized Mutlinomial Logistic Regression. https://api.semanticscholar.
org/CorpusID:14084261

[4] Grigory Chirkov and David Wentzlaff. 2023. Seizing the Bandwidth
Scaling of On-Package Interconnect in a Post-Moore’s Law World.
Proceedings of the 37th International Conference on Supercomputing
(2023). https://api.semanticscholar.org/CorpusID:259205930

[5] Kallia Chronaki, Alejandro Rico, Rosa M. Badia, Eduard Ayguadé,
Jesús Labarta, and Mateo Valero. 2015. Criticality-Aware Dynamic
Task Scheduling for Heterogeneous Architectures. Proceedings of
the 29th ACM on International Conference on Supercomputing (2015).
https://api.semanticscholar.org/CorpusID:14318692

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. 2010. Benchmarking cloud serving sys-
tems with YCSB. In ACM Symposium on Cloud Computing. https:
//api.semanticscholar.org/CorpusID:2589691

[7] Stephane Eranian. 2006. Perfmon2: A Flexible Performance Monitoring
Interface for Linux. In Proceedings of the 2006 Ottawa Linux Symposium.
269–288.

[8] Alessandro Fogli, Peter Pietzuch, and Jana Giceva. 2024. Optimizing
Sorting for Chiplet-Based CPUs. In Proceedings of the VLDB Workshop.
Imperial College London. https://www.doc.ic.ac.uk/~af6618/files/
papers/Optimizing_Sorting_for_Chiplet_Based_CPUs.pdf

[9] Alessandro Fogli, Bo Zhao, Peter Pietzuch, Maximilian Bandle, and
Jana Giceva. 2024. OLAP on Modern Chiplet-Based Processors. Proc.
VLDB Endow. 17 (2024), 3428–3441. https://api.semanticscholar.org/
CorpusID:272298657

[10] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Au-
gusto Fröhlich, and Rodolfo Pellizzoni. 2015. A Survey on Cache Man-
agement Mechanisms for Real-Time Embedded Systems. ACM Com-
puting Surveys (CSUR) 48 (2015), 1 – 36. https://api.semanticscholar.
org/CorpusID:13709071

[11] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware
scheduling and analysis for multicores. In International Conference
on Embedded Software. https://api.semanticscholar.org/CorpusID:
3345010

[12] Hacarus. 2024. Analyzing Unconventional Logic Semiconductors – A
Shift Away from Semiconductor Manufacturers. https://hacarus.com/
ai-lab/03312022-graviton3/. Accessed: 2024-03-01.

[13] Intel. 2024. Accelerating Innovation Through A Stan-
dard Chiplet Interface: The Advanced Interface Bus (AIB).
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/accelerating-innovation-through-aib-whitepaper.pdf.
Accessed: 2024-05-12.

[14] Intel. 2024. Hardware LLC prefetch feature on 4th Gen
Intel® Xeon® Scalable Processor (Codename Sapphire
Rapids). https://www.intel.com/content/www/us/en/content-
details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-
xeon-scalable-processor-codename-sapphire-rapids.html. Accessed:
2024-05-12.

[15] Intel. 2024. Introduction to Cache Allocation Technology in the Intel®
Xeon® Processor E5 v4 Family. https://www.intel.com/content/
www/us/en/developer/articles/technical/introduction-to-cache-
allocation-technology.html. Accessed: 2024-03-01.

https://api.semanticscholar.org/CorpusID:14084261
https://api.semanticscholar.org/CorpusID:14084261
https://api.semanticscholar.org/CorpusID:259205930
https://api.semanticscholar.org/CorpusID:14318692
https://api.semanticscholar.org/CorpusID:2589691
https://api.semanticscholar.org/CorpusID:2589691
https://www.doc.ic.ac.uk/~af6618/files/papers/Optimizing_Sorting_for_Chiplet_Based_CPUs.pdf
https://www.doc.ic.ac.uk/~af6618/files/papers/Optimizing_Sorting_for_Chiplet_Based_CPUs.pdf
https://api.semanticscholar.org/CorpusID:272298657
https://api.semanticscholar.org/CorpusID:272298657
https://api.semanticscholar.org/CorpusID:13709071
https://api.semanticscholar.org/CorpusID:13709071
https://api.semanticscholar.org/CorpusID:3345010
https://api.semanticscholar.org/CorpusID:3345010
https://hacarus.com/ai-lab/03312022-graviton3/
https://hacarus.com/ai-lab/03312022-graviton3/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-innovation-through-aib-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-innovation-through-aib-whitepaper.pdf
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html


CHARM: Chiplet Heterogeneity-Aware Runtime Mapping System EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

[16] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,
Simon Steely, and Joel Emer. 2008. Adaptive insertion policies for
managing shared caches. In 2008 International Conference on Parallel
Architectures and Compilation Techniques (PACT). 208–219.

[17] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Timothy L.
Harris. 2015. Shoal: Smart Allocation and Replication of Memory For
Parallel Programs. In USENIX Annual Technical Conference. https:
//api.semanticscholar.org/CorpusID:16355072

[18] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable
NUMA-aware Blocking Synchronization Primitives. In USENIX An-
nual Technical Conference. https://api.semanticscholar.org/CorpusID:
27706749

[19] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pan-
dis. 2016. ERMIA: Fast Memory-Optimized Database System for Het-
erogeneous Workloads. Proceedings of the 2016 International Confer-
ence on Management of Data (2016). https://api.semanticscholar.org/
CorpusID:15201540

[20] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
2014. Morsel-driven parallelism: a NUMA-aware query evaluation
framework for the many-core age. Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data (2014).
https://api.semanticscholar.org/CorpusID:12770718

[21] Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the
End of DRAM Cache Conflicts (in Tiered Main Memory Systems). In
USENIX Symposium on Operating Systems Design and Implementation.
https://api.semanticscholar.org/CorpusID:259859155

[22] Mian Liao, Daniel H. Zhou, P. Wang, and Minjie Chen. 2023. Power Sys-
tems on Chiplet: Inductor-Linked Multi-Output Switched-Capacitor
Multi-Rail Power Delivery on Chiplets. 2023 Fourth International
Symposium on 3D Power Electronics Integration and Manufacturing
(3D-PEIM) (2023), 1–7. https://api.semanticscholar.org/CorpusID:
257260550

[23] Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston, Fabien Gaud,
Vivien Quéma, and Alexandra Fedorova. 2016. The Linux scheduler:
a decade of wasted cores. Proceedings of the Eleventh European Con-
ference on Computer Systems (2016). https://api.semanticscholar.org/
CorpusID:14017684

[24] Michael Mattioli. 2021. Rome to Milan, AMD Continues Its Tour of
Italy. IEEE Micro 41, 4 (2021), 78–83. https://doi.org/10.1109/MM.2021.
3086541

[25] Ke Meng and Guangming Tan. 2017. RING: NUMA-Aware Message-
Batching Runtime for Data-Intensive Applications. 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS)
(2017), 368–375. https://api.semanticscholar.org/CorpusID:44184357

[26] E. F. Moore. 1959. The shortest path through a maze. In Proc. of an In-
ternational Symposium on the Theory of Switching. Harvard University
Press, 285–292.

[27] Richard Murphy, David A. Bader, and et al. 2010. The Graph500 List:
Providing Benchmarking Capabilities for Data-Intensive Supercom-
puting. Journal of Physics: Conference Series 78 (2010), 1–10.

[28] Samuel D. Naffziger, Noah Beck, Thomas D. Burd, Kevin M. Lepak,
Gabriel H. Loh, Mahesh Subramony, and Sean White. 2021. Pioneering
Chiplet Technology and Design for the AMD EPYC™ and Ryzen™
Processor Families : Industrial Product. 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA) (2021), 57–70.
https://api.semanticscholar.org/CorpusID:235415451

[29] Samuel D. Naffziger, Kevin M. Lepak, Milam Paraschou, and Mahesh
Subramony. 2020. 2.2 AMD Chiplet Architecture for High-Performance
Server and Desktop Products. 2020 IEEE International Solid- State
Circuits Conference - (ISSCC) (2020), 44–45. https://api.semanticscholar.
org/CorpusID:215800319

[30] Nevine Nassif, Ashley Munch, Carleton L. Molnar, Gerald Pasdast,
Sitaraman V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart,

Srikrishnan Venkataraman, Sireesha Kandula, Rafi Marom, Alexan-
der M. Kern, William J. Bowhill, David Mulvihill, Srikanth Nimma-
gadda, Varma Kalidindi, Jonathan Krause, Mohammad MinHazul
Haq, Roopali Sharma, and Kevin Duda. 2022. Sapphire Rapids: The
Next-Generation Intel Xeon Scalable Processor. 2022 IEEE Inter-
national Solid- State Circuits Conference (ISSCC) 65 (2022), 44–46.
https://api.semanticscholar.org/CorpusID:247523158

[31] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2014. Grappa : A Latency-
Tolerant Runtime for Large-Scale Irregular Applications. https://api.
semanticscholar.org/CorpusID:13975117

[32] Danica Porobic, Erietta Liarou, Pınar Tözün, and Anastasia Ailamaki.
2014. ATraPos: Adaptive transaction processing on hardware Islands.
2014 IEEE 30th International Conference on Data Engineering (2014),
688–699. https://api.semanticscholar.org/CorpusID:12976945

[33] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami,
and Anastasia Ailamaki. 2016. Adaptive NUMA-aware data placement
and task scheduling for analytical workloads in main-memory column-
stores. Proc. VLDB Endow. 10 (2016), 37–48. https://api.semanticscholar.
org/CorpusID:15589515

[34] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime Mecha-
nism to Partition Shared Caches. 2006 39th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’06) (2006), 423–432.
https://api.semanticscholar.org/CorpusID:9229826

[35] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable
Analytical Database. Proceedings of the 2019 International Conference on
Management of Data (2019). https://api.semanticscholar.org/CorpusID:
195259571

[36] Robert Schöne, Thomas Ilsche, Mario Bielert, Markus Velten, Markus
Schmidl, and Daniel Hackenberg. 2021. Energy Efficiency Aspects
of the AMD Zen 2 Architecture. 2021 IEEE International Confer-
ence on Cluster Computing (CLUSTER) (2021), 562–571. https://api.
semanticscholar.org/CorpusID:236772121

[37] Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit, and
María Engracia Gómez. 2017. Application Clustering Policies to Ad-
dress System Fairness with Intel’s Cache Allocation Technology. 2017
26th International Conference on Parallel Architectures and Compilation
Techniques (PACT) (2017), 194–205. https://api.semanticscholar.org/
CorpusID:3474052

[38] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2016. Co-
herence Stalls or Latency Tolerance: Informed CPU Scheduling for
Socket and Core Sharing. In USENIX Annual Technical Conference.
https://api.semanticscholar.org/CorpusID:17048199

[39] David Suggs, Mahesh Subramony, and Dan Bouvier. 2020. The
AMD “Zen 2” Processor. IEEE Micro 40 (2020), 45–52. https:
//api.semanticscholar.org/CorpusID:214005391

[40] Mikkel Thorup. 1999. Undirected single-source shortest paths with
positive integer weights in linear time. J. ACM 46, 3 (May 1999),
362–394. https://doi.org/10.1145/316542.316548

[41] Christopher Torng, Moyang Wang, and Christopher Batten. 2016.
Asymmetry-Aware Work-Stealing Runtimes. 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Architecture (ISCA) (2016),
40–52. https://api.semanticscholar.org/CorpusID:14372147

[42] Transaction Processing Performance Council. 2010. TPC Bench-
mark™ C Standard Specification, Version 5.11. http://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

[43] Transaction Processing Performance Council. 2021. TPC Benchmark™
H Standard Specification, Version 2.17.3. http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-h_v2.17.3.pdf

[44] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hackenberg.
2022. Memory Performance of AMD EPYC Rome and Intel Cascade
Lake SP Server Processors. Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering (2022). https:

https://api.semanticscholar.org/CorpusID:16355072
https://api.semanticscholar.org/CorpusID:16355072
https://api.semanticscholar.org/CorpusID:27706749
https://api.semanticscholar.org/CorpusID:27706749
https://api.semanticscholar.org/CorpusID:15201540
https://api.semanticscholar.org/CorpusID:15201540
https://api.semanticscholar.org/CorpusID:12770718
https://api.semanticscholar.org/CorpusID:259859155
https://api.semanticscholar.org/CorpusID:257260550
https://api.semanticscholar.org/CorpusID:257260550
https://api.semanticscholar.org/CorpusID:14017684
https://api.semanticscholar.org/CorpusID:14017684
https://doi.org/10.1109/MM.2021.3086541
https://doi.org/10.1109/MM.2021.3086541
https://api.semanticscholar.org/CorpusID:44184357
https://api.semanticscholar.org/CorpusID:235415451
https://api.semanticscholar.org/CorpusID:215800319
https://api.semanticscholar.org/CorpusID:215800319
https://api.semanticscholar.org/CorpusID:247523158
https://api.semanticscholar.org/CorpusID:13975117
https://api.semanticscholar.org/CorpusID:13975117
https://api.semanticscholar.org/CorpusID:12976945
https://api.semanticscholar.org/CorpusID:15589515
https://api.semanticscholar.org/CorpusID:15589515
https://api.semanticscholar.org/CorpusID:9229826
https://api.semanticscholar.org/CorpusID:195259571
https://api.semanticscholar.org/CorpusID:195259571
https://api.semanticscholar.org/CorpusID:236772121
https://api.semanticscholar.org/CorpusID:236772121
https://api.semanticscholar.org/CorpusID:3474052
https://api.semanticscholar.org/CorpusID:3474052
https://api.semanticscholar.org/CorpusID:17048199
https://api.semanticscholar.org/CorpusID:214005391
https://api.semanticscholar.org/CorpusID:214005391
https://doi.org/10.1145/316542.316548
https://api.semanticscholar.org/CorpusID:14372147
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf
https://api.semanticscholar.org/CorpusID:247681823
https://api.semanticscholar.org/CorpusID:247681823


EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Alessandro Fogli, Bo Zhao, Peter Pietzuch, and Jana Giceva

//api.semanticscholar.org/CorpusID:247681823
[45] Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a

fridge: optimizing cache efficiency for in-memory key-value stores.
Proc. VLDB Endow. 13, 9 (May 2020), 1540–1554. https://doi.org/10.
14778/3397230.3397247

[46] Wei Wang, Jack W. Davidson, and Mary Lou Soffa. 2016. Predicting the
memory bandwidth and optimal core allocations for multi-threaded
applications on large-scale NUMA machines. 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA) (2016),
419–431. https://api.semanticscholar.org/CorpusID:14491359

[47] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei
Luo, and Zhenlin Wang. 2018. DCAPS: dynamic cache allocation with
partial sharing. Proceedings of the Thirteenth EuroSys Conference (2018).
https://api.semanticscholar.org/CorpusID:4934627

[48] Haoxuan Xie, Yixiang Fang, Yuyang Xia, Wensheng Luo, and Chenhao
Ma. 2023. On Querying Connected Components in Large Temporal

Graphs. Proceedings of the ACM on Management of Data 1 (2023), 1 –
27. https://api.semanticscholar.org/CorpusID:259213265

[49] Zhuoping Yang, Shixin Ji, Xingzhen Chen, Jinming Zhuang, Weifeng
Zhang, Dharmesh Jani, and Peipei Zhou. 2023. Challenges and Oppor-
tunities to Enable Large-Scale Computing via Heterogeneous Chiplets.
2024 29th Asia and South Pacific Design Automation Conference (ASP-
DAC) (2023), 765–770. https://api.semanticscholar.org/CorpusID:
265466297

[50] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017.
PARSEC3.0: A Multicore Benchmark Suite with Network Stacks
and SPLASH-2X. SIGARCH Comput. Archit. News 44 (2017), 1–16.
https://api.semanticscholar.org/CorpusID:2698588

[51] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-
Memory Statistical Analytics. ArXiv abs/1403.7550 (2014). https:
//api.semanticscholar.org/CorpusID:475536

https://api.semanticscholar.org/CorpusID:247681823
https://doi.org/10.14778/3397230.3397247
https://doi.org/10.14778/3397230.3397247
https://api.semanticscholar.org/CorpusID:14491359
https://api.semanticscholar.org/CorpusID:4934627
https://api.semanticscholar.org/CorpusID:259213265
https://api.semanticscholar.org/CorpusID:265466297
https://api.semanticscholar.org/CorpusID:265466297
https://api.semanticscholar.org/CorpusID:2698588
https://api.semanticscholar.org/CorpusID:475536
https://api.semanticscholar.org/CorpusID:475536

	Abstract
	1 Introduction
	2 Chiplet-Based CPUs
	2.1 Inter-core latencies
	2.2 More cores, limited memory channels
	2.3 Parallel processing on chiplets

	3 Challenges With Chiplets
	4 CHARM System Design
	4.1 CHARM architecture
	4.2 Chiplet-aware task scheduling policy
	4.3 Adaptive cache partitioning
	4.4 Fine-grained task parallelism
	4.5 Performance profiling and optimization
	4.6 Implementation and API

	5 Evaluation
	5.1 Experimental setup
	5.2 Overall effectiveness and efficiency
	5.3 Efficiency across chiplet-based architectures
	5.4 Scalability with optimized NUMA-aware systems
	5.5 Sensitivity analysis
	5.6 Performance on OLAP
	5.7 Performance on OLTP

	6 Related Work
	7 Conclusions
	References

