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Abstract
Generative Recommenders (GRs) have recently emerged as
promising alternatives to traditional Deep Learning Recom-
mendation Models (DLRMs). Despite their potential, GRs
remain computationally expensive in inference, exhibiting
compute-bound characteristics similar to the prefill stage
of Large Language Model (LLM) inference. Prefix caching
can reduce redundant computation by reusing previously
constructed KV caches. However, the unique properties of
GRs, i.e., highly personalized user profiles and real-time item
retrieval, make cache reuse across queries challenging, re-
sulting in limited computational savings.

To address these challenges, we present Bat, an efficient
serving system for GRs. The key observation is that the
semantics between user and item tokens are permutation-
invariant. Building on this, we propose Bipartite Attention, a
novel attention mechanism that enables adaptive selection of
either the user or the item as the prompt prefix without com-
promising accuracy, thereby unlocking new opportunities
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1 Introduction
Recommendation systems lie at the core of online businesses,
serving billions of daily active users and contributing sig-
nificantly to overall revenue [15, 47, 56]. Traditional recom-
mendation pipelines often adopt modular architectures with
Deep Learning Recommendation Models (DLRMs) [7, 8, 59,
64, 68, 92] as the foundation of the ranking stage. Despite
their success, DLRMs tend to hit a performance plateau as
the model capacity increases [84, 85], primarily due to their
limited expressiveness and difficulty in capturing complex
high-order user-item interactions.

Recently, generative models such as Large Language Mod-
els (LLMs [1]) and other Transformer-basedmodels [61] have
shown remarkable capabilities in zero-shot reasoning and
in-context learning. These properties have sparked growing
interest in applying generative recommenders (GRs) [84] or
LLMs [11, 29, 91] to recommendation tasks.1 The hypothe-
sis is straightforward yet powerful: since LLM performance
scales with compute (i.e., the Scaling Law [35]), scaling more
computation in recommendations, if managed efficiently,
may unlock new revenue opportunities [84, 85]. This par-
adigm has already shown practical promise. For example,
Meta has successfully deployed their GR, HSTU [84], in pro-
duction, achieving a 12.4% improvement in topline metrics.
Similar positive results have been reported by other compa-
nies [3, 4, 11, 22, 38, 71, 93]. We have also adopted a language-
model as GR, i.e., open-sourced pretrained Qwen2-1.5B [60]
in an online e-commerce ranking scenario, leading to im-
provements in click-through rate (CTR) due to the LLM’s
strong capability to understand user preferences.
Despite these breakthroughs, deploying GR as an online

recommendation service is still computationally expensive
due to its much larger model sizes than traditional DLRMs.
For instance, GR can be two orders of magnitude larger than
traditional DLRM [84]. In the ranking stage, GR encodes a
user’s profile and 100–200 candidate items [8, 66, 84] into
tokens and applies self-attention with a causal mask to pre-
dict the user preference probabilities of each item. After that,
the recommendation system selects the top-k most relevant
items to be recommended to the user. This process is similar
to the prefill stage in LLM inference [13], which is compute-
bound with a long input sequence, e.g., up to 8K tokens [16,
36, 49, 87, 90]. We evaluate the compute latency of small lan-
guage models from 1B to 7B with input sequence length from
512 to 8K. Given a 100-200ms latency SLO constraint [21],
we find that the computation latency can easily exceed the
limitation even for a single request (see Figure 2 (a)).
To address this issue, prefix caching is a widely studied

approach to minimize the computation costs of LLMs’ pre-
fill [16, 36, 49, 87] by storing and reusing key-value pairs (KV
cache) from the transformer’s attention mechanism. Recent

1In this paper, we focus on the ranking stage, the core of the recommenda-
tion system. See 2 for the overview of the recommendation system pipeline.

studies [16, 49] have shown that storing KV cache in the host
memory and disks can be more cost-efficient than full recom-
putation. However, we identify that the prefix caching ratio
can be down to 18%, if we naively apply prefix caching to
our real advertising GR rank workloads. Specifically, existing
common practices, denoted as User-as-prefix attention, orga-
nize a input sequence as user profile tokens, candidate item
tokens, and system instructions, as shown in Figure 1. On
the one hand, only user profile tokens can be reused across
a single user’s multi-turn requests, since strong personaliza-
tion prevents inter-user cache sharing, while real-time item
retrieval generates dynamic and diverse candidate sets, mak-
ing intra-user item cache sharing ineffective. On the other
hand, user cache misses remain high in large-scale advertis-
ing environments with user populations on the order of 108,
where a substantial fraction of users are inactive, as illus-
trated in Figure 2 (c). In contrast, our trace analysis (Figure 2
(b) and (d)) shows that item tokens account for more than
33% of all tokens, and popular items are frequently shared
across users—yet such opportunities are not exploited by
existing methods.
This paper introduces a key insight: user and item se-

mantics in recommendation prompts are permutation-
invariant. That is, swapping the order of user and item
tokens in the prompt does not affect the context seman-
tics. We empirically validate this observation across multiple
datasets and models, as shown in Table 3. Building on this
insight, we propose Bipartite Attention, a novel algorithm
that enables new opportunities for KV cache reuse without
compromising accuracy. As illustrated in Figure 1, Bipartite
Attention introduces an Item-as-prefix alternative to the tra-
ditional User-as-prefix attention. To make item prefix caches
independent from other tokens, we adjust the position encod-
ing and attention mask of items accordingly. The advantages
of Item-as-prefix are threefold: 1) reusing item cache across
thousands or even millions of users; 2) requiring only lo-
cal memory to store all items, e.g., 287 GB vs 430 TB (1M
items vs 10M users, see Industry in Table 1); 3) saving more
computation for inactive users with fewer tokens.
Building on Bipartite Attention, we develop Bat, an effi-

cient serving system for GRs. Unlike existing LLM/KV cache
optimization schemes that passively manage caches under
fixed user queries, Bat proactively selects the prefix type
and manages KV caches accordingly. However, this design
introduces new challenges. First, item caching incurs ad-
ditional memory capacity overhead. To mitigate this, we
propose a hot-replicated cold-sharded item cache placement
that reduces memory consumption per machine by pooling
memory across local machines through high-speed networks
and replicating hot items to avoid IO bottlenecks. Second,
users’ token lengths and access patterns also follow a skewed
distribution, making prefix selection for each request non-
trivial. To address this, we design a hotness-aware prompt
scheduling strategy that employs a window-based frequency
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Figure 1. TheMechanism of GR Inference with Bipartite Attention. It can select either User-as-prefix attention or Item-as-prefix
attention. We omit the other components in 𝐿 transformer blocks for simplicity. The hidden state of the last token is projected
onto a logit space to estimate the user’s preference for candidate items. The attention across different items is masked out [84].

estimator and a decision model to schedule requests’ atten-
tion pattern.
We evaluate Bat across multiple real-world recommen-

dation datasets and industrial workloads. The experimental
results demonstrate that Bat improves serving throughput
by up to 1.6× over the conventional user-as-prefix approach,
while reducing total computation by up to 58%.

This paper makes the following contributions:
(1) We characterize the new GR serving workload and iden-
tify its prefix cache reuse challenges.
(2)We propose Bipartite Attention, a novel attention mecha-
nism that enables adaptive selection of either the user or the
item as the prompt prefix without compromising accuracy,
thereby unlocking new opportunities for KV cache reuse.
(3) We design a disaggregated KV cache pool that proac-
tively manages user-prefix and item-prefix caches based on
recommendation systems’ characteristics.
(4) We propose a hot-replicated cold-sharded item cache
placement and hotness-aware prompt scheduling strategies
to maximize system throughput under memory constraints.

2 Preliminaries
2.1 Recommendation System
A typical industrial-scale recommendation system follows a
multi-stage pipeline [8, 21, 66] to efficiently process and rank
a massive pool of candidate items. This pipeline is generally
divided into two main stages: retrieval and ranking [84].
The retrieval stage serves as a coarse filtering process,

retrieving a small subset (e.g., hundreds or thousands) of
potentially relevant items from a much larger corpus—often

containing millions or billions of items. This stage prioritizes
speed and coverage, relying on lightweight models such
as collaborative filtering [23], nearest neighbor search [28,
75], or rule-based heuristics [51] to ensure the candidate set
retains most of the user-relevant content.
Following the retrieval, the ranking stage re-scores the

retrieved items using more expressive and computationally
intensive models. These models are designed to capture fine-
grained user-item interactions and contextual information
(e.g., time, location, user behavior history), often leveraging
deep learning architectures such as Deep Learning Recom-
mendation Models (DLRMs) [7, 8, 59, 64, 68, 92] or, more
recently, Generative Recommenders (GRs) [11, 27, 29, 71, 84].
The ranking stage is typically responsible for producing the
final top-k recommendations that the user will see, and thus
has a critical impact on key business metrics such as click-
through rate (CTR) and revenue.
2.2 Generative Recommenders (GRs)
In this paper, we focus on applying GRs to the recommenda-
tion ranking stage.
Problem Formulation. As shown in Figure 1, the genera-
tive ranking tasks can be formalized as: Given a user profile
token set U, a set of candidate items I = I1,I2, . . . ,I𝑁 ,
where each I𝑖 represents the tokens of a candidate item 𝑖 ,
and instruction tokens 𝐼𝑛𝑠𝑡𝑟 , the goal is to predict a ranked
list of top-k items from 𝑁 candidates that best match the
user’s preferences. 𝑁 is typically at the hundreds-level [21],
e.g., 100. The user profile U typically encodes the user’s
historical interaction data (e.g., clicked or purchased items)
and static attributes (e.g., age, gender, location). Each item
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Figure 2. (a) Latency Comparison: Recompute vs Prefix Cache. Model A: Qwen2-1.5B [60], Model B: Llama3-1B [20], Model
C: Qwen2-7B [60]. Recomp and Prefix denote recomputation and loading prefix caching from CPU memory. (b,c,d) The
Distribution of User Token Numbers, User Access Frequency, and Item Access Frequency CDF from Our Tracing.

profile I𝑖 encodes attributes such as title, brand, category,
and seller information. The GR model generates a relevance
score 𝑠𝑖 = 𝑓 (U,I𝑖 ) to each item.
GR Inference. The inference of GR will stack 𝐿 Transformer
layers to yield the final hidden representation of the last
token (or discriminant tokens). The Transformer layer ℓ (1 <

ℓ <= 𝐿) consists of a multi-head self-attention followed
by a feed-forward network (FFN). We denote the input as
a token sequence: 𝑥1:𝑇 = [U,I1, . . . ,I𝑁 , 𝐼𝑛𝑠𝑡𝑟 ]. The total
length of the sequence is 𝑇 . Each token 𝑥𝑡 is mapped into
its embedding: ℎ (0)𝑡 = E[𝑥𝑡 ], 1 ≤ 𝑡 ≤ 𝑇 . These embeddings
are processed through 𝐿 Transformer layers to obtain the
hidden representations

ℎ
(𝐿)
1:𝑇 = Transformer(ℎ (0)1:𝑇 ).

Assume that we take the last token as the discriminant token
and we use a LLM as the ranking model. 𝑇 is the position of
the last token in the sequence. We project its hidden state to
vocabulary logits:

z = Woutℎ
(𝐿)
𝑇
∈ R |V | .

For each candidate item I𝑖 with identifier token 𝑣𝑖 ∈ V , its
relevance score is given by

𝑠𝑖 =
exp(z[𝑣𝑖 ])∑𝑁
𝑗=1 exp(z[𝑣 𝑗 ])

.

The final ranked list is obtained as

TopK(I) = TopK𝑖∈[1,𝑁 ] 𝑠𝑖 .

3 Motivation
3.1 Characterizing GR Inference
The GR inference process exhibits similar characteristics to
the prefill phase in LLM inference [13]. As in LLMs, this phase
is typically compute-bound [16, 36, 49, 87, 90], dominated
by dense matrix multiplications across all transformer layers,
especially when the input sequence is long.

To demonstrate this, we evaluate three popular LLMs, i.e.,
Qwen2-1.5B, Qwen-2-7B, and LLama3-1B, with an A100 GPU.
From our tracing data, we observe that the user profile token
number can be up to 8K (A similar number was reported

by Meta [84]). We vary the input sequence length from 512
to 8192 tokens and profile the compute latency per request
(setting batch size to 1), as shown in Figure 2 (a). Given a
100ms latency SLO constraint [21], the computation latency
can easily exceed the limitation with long sequences and
large models. As recommendation systems will serve tens
or hundreds of millions of users daily, we must deploy thou-
sands of GPU machines, which incurs a high monetary cost,
severely limiting the cost-efficiency of the GR.
3.2 Prefix Caching
Prefix caching has been proven efficient in existing studies
to reduce redundant computation by using the previously
computed KV cache. Formally, suppose the current input se-
quence 𝑥1:𝑇 shares a prefix of length 𝑃 with a previously pro-
cessed sequence, and the corresponding KV cache (𝑘1:𝑃 , 𝑣1:𝑃 )
has already been stored. During prefill, we only need to
compute the projections for the suffix tokens 𝑥𝑃+1:𝑇 :

𝑞𝑃+1:𝑇 , 𝑘𝑃+1:𝑇 , 𝑣𝑃+1:𝑇 = Proj(𝑥𝑃+1:𝑇 ),

and construct the complete attention context by concatenat-
ing cached and newly generated keys and values:

𝑘1:𝑇 = [𝑘1:𝑃 ;𝑘𝑃+1:𝑇 ], 𝑣1:𝑇 = [𝑣1:𝑃 ; 𝑣𝑃+1:𝑇 ] .

The output for the suffix tokens is then computed via stan-
dard attention:

𝑜𝑃+1:𝑇 = Attention(𝑞𝑃+1:𝑇 , 𝑘1:𝑇 , 𝑣1:𝑇 ).

Finally, the updated KV cache (𝑘1:𝑃 , 𝑣1:𝑃 ) can be stored for
future reuse. This optimization with shared prefixes signifi-
cantly reduces redundant computation inmulti-turn ormulti-
request inference scenarios.

Previous studies have shown that the bandwidth require-
ment for loading prefix cache is as low as 8GB/s for an 8-A100
machine [49], less than 20GB/s of PCIe 4.0. We compare pre-
fix caching with recomputation on an A100 GPU with PCIe
4.0. Figure 2 (a) reports that prefix caching can be orders of
magnitude lower serving latency than recomputation. There-
fore, prefix caching opens an opportunity to improve the
cost-efficiency of GR serving.
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3.3 Challenges of Prefix Caching
We apply prefix caching to our real e-commerce advertising
GR ranking workloads. Specifically, we take the user profile
tokens, 100× candidate items each with 10 tokens, and a set
of system instruction tokens as input sequence. We denote
this organization as User-as-prefix, as illustrated in Figure 1.
We evaluate a Qwen2-1.5B model. We identify that only the
user profile tokens can be reused across a single user’s multi-
turn requests, resulting in a cache hit rate as low as 18%. This
low reuse stems from the large user base, where many users
remain inactive.

3.3.1 Which Part of the KV Cache can be Reused? We
identify that only the user profile tokens can be reused. The
challenges stem from the personalized user preferences and
real-time item retrieval.
(1) Hard Inter-user Cache Sharing due to Personaliza-
tion. Recommendation systems exhibit strong personaliza-
tion, because each user’s prompt consists of a combination
of interaction history and the user’s unique profile, which
are highly specific and rarely shared across different users.
Due to the causal attention mechanism, the item KV cache
that depends on the previous user’s context can also not be
shared across different users.
(2) Hard Intra-user Item Cache Sharing due to Real-
time Item Retrieval. GR inference assembles prompts in
an ad-hoc fashion. The candidate item set is determined
dynamically by the retrieval module based on real-time user
context. And the recommendation system tends to select
different items for users in different turns of interactions.
Thus, the item KV cache can hardly be shared across different
requests of each user.

Therefore, we can only share each user’s KV cache across
its multi-turn requests with the User-as-prefix attention.

3.3.2 Why is Sharing Only the User Prefix not Suffi-
cient? Similar to existing LLM systems [36, 49, 62, 87], we
can use the local machine’s CPU/GPU memory2 to act as the
cache of the KV cache. However, due to a large user base
where many users remain inactive, we identify that the user
cache hit ratio can be down to 18%.
(1) Large Number of Daily Engaged Users. In large-scale
recommendation scenarios, the number of daily engaged
users can be as high as 108, as observed in our e-commerce
advertising workloads and the existing workloads [84]. We
identify that the total memory consumption of the user-as-
prefix cache can reach up to 2.9 PBs, which exceeds the
feasible limits of GPU or CPU memory of serving machines.
Specifically, consider a transformer model with 𝐿 layers, 𝐻
attention heads per layer, and head dimension 𝐷 . For each
token, the KV cache stores both key and value vectors of

2Utilizing cheap local/remote storage can achieve a larger cost-effective
storage space. However, it might incur harmful access latency [6, 49] and
complex IO management. We leave this for our future exploration.

shape𝐻 ×𝐷 ×𝐿. Using float16 precision, the KV cache size
per token is:
KV cache per token = 2 × 𝐻 × 𝐷 × 𝐿 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐹𝑃16) Bytes.
The total KV cache size for a user prefix with𝑇𝑢 tokens is𝑇𝑢×
2𝐻𝐷𝐿×2 bytes. As an example, we take a Qwen2-1.5B model
with 𝐿 = 28, 𝐻 = 2, 𝐷 = 128, and average user token number
𝑇𝑢 = 1000, so a single user occupies approximately 29𝑀𝐵 KV
cache. Caching 108 such user prefixes would require over 2.9
PB of storage, thereby infeasible to store all users’ KV cache
in local machines.
(2) Large Number of Inactive Users. We collect the users’
access frequency on an hourly basis and observe that many
inactive users access the system less than two times, as
shown in Figure 2 (c). This leads to a high proportion of
compulsory cache misses and cache pollution, which, in
turn, causes additional capacity misses. Specifically, when a
new request arrives, a GR system can look up its local cache.
If the prefix matches existing tokens, the prefix cache can
be retrieved. Otherwise, GR needs to recompute the prefix
tokens and update the KV cache in its cache system, e.g.,
using LRU replacement [49]. We experiment on an industrial
workload (see details in § 6). We observe that the cache hit
rate is reduced to 18% and the total computational savings
are limited to less than 11% of recomputation. Moreover, as
shown in Figure 2 (b), we observe that user tokens follow a
long-tail distribution: Many inactive users have fewer than
1K tokens. Among all users, around 33% of the tokens are
item tokens and can not be shared.

4 Bipartite Attention
To tackle the challenges of prefix caching, we propose Bipar-
tite Attention, a novel algorithm that unlocks new opportu-
nities for KV cache reuse without sacrificing accuracy.
4.1 Insight
Our traces show that the item’s access frequency is highly
skewed, with its CDF shown in Figure 2 (d). In particular,
roughly 90% of accesses focus on the top 10% of hot items.
This implies that hot item tokens can be shared across a large
number of users, thereby improving the memory utilization
of the KV cache. Motivated by this, our key insight is that
user and item semantics in recommendation prompts
are permutation-invariant. The underlying reason is that
the user information and item information can be regarded
as an unordered set, instead of a sequence (the tokens inside
each item and user are maintained as sequences). Similar
phenomena have been reported by LLM’s multiple-choice
tasks [43]. We empirically validate this on different datasets
and GR models, as shown in Table 3.
4.2 Mechanism
Given a request, Bipartite Attention consists of two alterna-
tive GR inference mechanisms: 1) User-as-prefix attention,
and 2) Item-as-prefix attention.
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User-as-prefix Attention. In this setting, the input is or-
ganized as [U,I1, . . . ,I𝑁 , 𝐼𝑛𝑠𝑡𝑟 ]. If enabling prefix caching,
the KV cache of user tokensU is pre-computed and cached.
During real-time inference, if the prefix cache hits, only the
tokens of items and instructions are computed and discarded,
as they are hard to share:

AttnU-prefix = Attn(𝑞I,Instr, 𝑘I,Instr ∪ 𝑘U, 𝑣I,Instr ∪ 𝑣U).

Item-as-prefix Attention. In this attention, the input is
organized as [I1, . . . ,I𝑁 ,U, 𝐼𝑛𝑠𝑡𝑟 ]. The key-value pairs of
items I are pre-computed and cached. In inference, user and
instruction queries are attended to their own tokens and the
cached item prefix, and finally discarded:

AttnI-prefix = Attn(𝑞U,Instr, 𝑘U,Instr ∪ 𝑘I, 𝑣U,Instr ∪ 𝑣I).

Attention Masks and Position Encoding.We adjust the
attention mask and position encoding [55] of Bipartite At-
tention to remove positional bias [43], leveraging the inher-
ent independence (to ensure fair comparison) of candidate
items in recommendation systems [84, 92]. For example, in
Transformer-based architectures, HSTU [84] applies an at-
tention mask to prevent cross-attention between items. Fol-
lowing this principle, we apply similar attention masks to
both the User-as-prefix and Item-as-prefix settings, as shown
in Figure 1. In addition, we adjust the position encoding so
that all items share the same starting position ID (i.e., the po-
sition of their first token). Specifically, in the User-as-prefix
case, the starting position of items is set to the length of
the user tokens; in the Item-as-prefix case, it is reset to 0 (or
optionally after notation tokens such as “Candidate items:”).
This design ensures that the tokens of each item remain
independent from other items, as well as from subsequent
user and instruction tokens. Therefore, we can pre-compute
every item’s KV cache and store them independently. We
will discuss the benefits of this design in § 4.3.
Discriminant Tokens. In our current design, the discrimi-
nant token that determines the ranking score of all items is
the last token in the sequence. Specifically, we calculate the
hidden states of this token and project it to a logit, which
can be used to identify the probabilities of all items. Addi-
tionally, our mechanism can be extended to multiple tokens
by applying attention to them, e.g., one discriminant token
per item, as in other works [29, 84].
Extending to HSTU [84]. Although we mainly focus on
the language models as the GR model, we believe the idea
of our Bipartite Attention can be extended to other trans-
former architectures, like a recent popular work, HSTU.
LLMs and HSTU share the same fundamental formulation:
both model user–item interactions through causal attention
and treat recommendation as a next-token prediction prob-
lem (i.e., computing logits). Their primary difference lies in
how users and items are represented as tokens—whether
through language vocabulary, traditional item-embedding
tables (HSTU [84]), or intermediate representations such as

Semantic ID [11, 33, 50]. GR remains an emerging area with-
out a common design paradigm. To our knowledge, many
companies are actively exploring different approaches in
parallel. We leave the exploration of HSTU-based GR for our
future work.
Sensitivity to Base Models. We observe that in certain
cases, the Item-as-prefix attention may lead to degraded per-
formance. This phenomenon depends on the base model’s
ability to distinguish between set semantics and sequence se-
mantics. For instance, in instruction-tuned language models
such as Llama3-Instruct [20], swapping the prefix results in a
noticeable performance drop. In practice, we can select a base
model that supports modifying position encodings. Mean-
while, as we will periodically fine-tune a GR model to update
its knowledge with new data, we can optionally adjust its
position encoding during training without incurring extra
training overheads. And at inference time, we can leverage
existing position-independent caching (PIC) [26, 77] algo-
rithm to improve performance, which selectively recomputes
some critical tokens to mitigate accuracy degradation.
4.3 Advantages of Item-as-prefix Attention
We demonstrate that there are three advantages of the Item-
as-prefix attention over the User-as-prefix attention.
(1) Enabling KV Cache Sharing Cross-users. In real
recommendation scenarios, items are typically exposed to
a broad user base rather than being restricted to a single
individual. For example, popular items—such as trending
products, frequently advertised goods, or widely consumed
media content—are naturally recommended to many users,
particularly those who share similar preferences [23]. From
the supply side, item providers and advertisers deliberately
promote their content to maximize exposure across diverse
audiences. These two factors together lead to substantial
overlap in item access patterns across users. Consequently,
unlike highly personalized user profiles, item tokens exhibit
much higher reuse potential. Leveraging this inherent re-
dundancy, we enable item KV cache sharing across different
users, thereby improving cache efficiency while reducing
redundant computation.
(2) Storing Item KV Cache with Only Local Memory. In
our workload, the item number of a single recommendation
scenario can be 1M to 10M. We observe that the average item
token number is around 10. Similar numbers can be found
in Amazon’s datasets [24]. With a Qwen2-1.5B model, the
total item KV cache size is about 287GB to 2.87TB. Many
modern servers’ CPU memory can be up to 2TB, and overall
GPU memory, e.g., 8×H20, can be up to 768GB. With our hot-
replicated cold-sharded item cache placement (See 5.2 for
more details), it’s feasible to leverage the local machine/clus-
ter’s CPU/GPU memory to store item KV cache. In contrast,
storing all user KV cache requires PB-scale storage.
(3) Saving More Tokens for Inactive Users. As shown in
Figure 2(b), 36% of users have fewer tokens in their profiles
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Figure 3. Overall Architecture of Bat.

than the number of item tokens (e.g., around 1,000 tokens
for 100 candidate items). For these users, leveraging the item
KV cache yields, on average, a 13.2% higher token reuse rate
compared to the user KV cache. Moreover, more than 55%
of users access the recommendation system only once per
hour. In such cases, the user KV cache often suffers from
compulsory misses, whereas item caching can consistently
save up to 1,000 tokens per user. Finally, as the number of
candidate items and the token length per item increase, the
advantages of item caching become even more significant.3

5 System Design
5.1 Overall Architecture
Building on Bipartite Attention, we develop Bat, an efficient
GRs serving system that designs a compute-storage disag-
gregated KV cache pool to proactively manage user- and
item-prefix caches, as illustrated in Figure 3. During the of-
fline initialization, Bat will allocate a pooled memory for
item cache and use the rest memory for user cache (See de-
tails in § 5.2). During the online serving process, Bat relies
on a centralized hotness-aware prompt scheduler to decide
the attention pattern of each request based on cache hotness
and cache indexes queried from a centralized cache meta
service (See details in § 5.3). Once a decision is made, the
scheduler dispatches the input sequences to 𝑀 inference
workers to perform computation, while the cache metadata
service initiates the transfer of physical KV caches from
cache workers to inference workers.
Hotness-aware Prompt Scheduler. The scheduler takes
the ranking requests as inputs. Each request is generated
from the retrieval stage in the recommendation pipeline
and consists of a user ID and a set of candidate items’ IDs.
The user profile, item description, and system instructions
are pre-encoded into tokens and stored. The scheduler will
periodically query a batch of the related users/items’ KV
cache state, e.g., cache hit/miss and cache hotness, from
the cache meta service, which will be used to determine

3In the retrieval stages, the candidate item numbers can be larger than 10K.
We leave this as our future work.

the prompt order (The strategy is discussed in § 5.3). Once
determined, the scheduler concatenates the tokens into a
batch of recommendation prompts of multiple requests and
distributes them to inference workers in a load-balanced
manner [49]. Meanwhile, it issues cache read requests to
the cache metadata service when a prefix hit occurs. When
a prefix cache is recomputed by an inference worker, the
scheduler also coordinates the corresponding cache write
operation in the background.
Inference Worker. Bat launches multiple inference work-
ers, each running on a dedicated GPU. The inference engine
is built on top of vLLM [36], a state-of-the-art system for serv-
ing autoregressive language models. We customize the at-
tention module with our proposed Bipartite Attention mech-
anism and integrate a high-performance FlashInfer [79]
backend for optimized execution. Each worker maintains
a local replica of the model weights and performs forward
passes on the incoming batches. To meet the latency SLA, we
enforce a max-batched-tokens limit, e.g., 4000 tokens, with
the value determined via offline profiling [49]. The infer-
ence workers can scale out to serve more requests with a
data-parallel strategy.
KV Cache Worker. Each KV cache worker manages a pool
of paged memory, e.g., CPU memory4 and GPU memory.
KV entries are stored at user/item granularity: all prefix to-
kens of a given user or item form one logical entry that is
physically organized into fixed-size pages compatible with
PagedAttention [36]. Internally, a KV cache worker main-
tains a transfer engine supporting network stacks like local
DMA and (GPUDirect) RDMA. The KV cache workers can
also scale out to increase memory capacity.
Cache Meta Service. The meta service is a logically cen-
tralized process that tracks the index and hotness of every
user/item KV entry across workers/tiers without holding
the physical data. It receives the cache read, write, and check
status requests from the prompt scheduler and manages the
corresponding memory pages. It coordinates the KV cache
workers for the physical KV cache transfer. It also proactively
updates entry hotness upon each query.
5.2 Hot-replicated Cold-sharded Item Placement
Compared to user-prefix caching, item caching consumes
part of the local memory, reducing space for user caches.
To address this, we aggregate multiple machines’ memory
as the item cache pool. However, recommendation system
retrieves items from the entire item corpus, which inevitably
introduces inter-node communication. To mitigate this, we
exploit the skewed access distribution (see Figure 2 (d)) and
propose a hot-replicated cold-sharded (HRCS) item cache
placement strategy. Our goal is to replicate hot items across
machines while evenly distributing long-tail items, thereby
reducing network overhead and preserving cache efficiency.
There are three main steps:

4In this work, we mainly evaluate on CPU memory.
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Step 1. Estimating the max allowed KV cache commu-
nication ratio through the inter-machine network, as
shown in Algorithm 1. To do so, we first profile the available
inter-node network bandwidth in an offline process and con-
vert it into token-centric throughput, i.e., 𝐵 tokens/second.
Second, we estimate the prefill computation time 𝑡 of a spe-
cific model given the 𝑐 × 𝜏𝑖 item tokens as the shared prefix
and 𝜏𝑢 user tokens as the suffix, where 𝑐 is the candidate item
number and 𝜏𝑢 /𝜏𝑖 are the average user/item token number of
a give dataset. This process can be achieved by a polynomial
regression model fitted with offline data [49] due to the reg-
ular and deterministic pattern of Transformers. Then we use
a hyperparameter 𝛼 to indicate the tolerable communication
time over computation. Finally, we get the maximum allowed
KV cache communication ratio 𝑅max =

𝛼×𝑡×𝐵×(𝑁−1)
𝑐×𝑆item×𝑁 , where

𝑁 is the KV cache worker number (assuming the transferred
KV cache is evenly distributed among workers).
Step 2. Calculating theCDF from ItemAccess Frequency
Distribution.We collect all items’ access frequency distri-
bution F from a past period, e.g., past one day. Then we
sort F by descent and add the frequency value to the CDF
until we reach the upper limit 1 − 𝑅max, which indicates the
replication ratio 𝑟 of the items in each KV cache worker.
Step 3. Placing KV Cache.We observe that the tokens of
each item, e.g., the description of items’ properties, are rarely
changed over time. Therefore, we first pre-compute the KV
cache for all items and load the items’ KV cache on each
KV cache worker in an offline process. Specifically, given
the replicate ratio 𝑟 , we select the item KV cache with the
highest access frequency to fill into the replicated area for
every worker and shard the remaining item KV cache across
workers for the first time. During online recommendation,
we can replace the KV cache item according to ad hoc hotness
in a background process5. For example, there are some burst
hotspot that should be recommended to most users. We
update these items in the replicate area. Note that there are
often new items added to the entire corpus. We add their KV
cache by a similar background compute and update strategy.
5.3 Hotness-Aware Prompt Scheduler
We propose a hotness-aware prompt scheduler to determine
the attention pattern for each request. The key question is:
Given a memory constraint, how to select the attention pattern
for each request to maximize the overall system throughput?

Trade-off: User-as-prefix vs Item-as-prefix. Given a lim-
ited cache budget, our goal is to minimize the total number
of newly computed tokens, or in other words, maximize the
number of tokens reused from cache. As Figure 2 (b) shows, the
users’ history tokens follow a skewed and long-tail distribu-
tion. Some active users have more behaviors, such as clicking
or purchasing more items, leading to more history tokens to

5We observe that the access frequency of items changes on an hourly or
daily basis.

Algorithm 1 HRCS Item Cache Placement
1: Input:
• 𝐵: Measured network bandwidth (tokens/sec)
• F : Item access frequency distribution
• 𝜏𝑢 : Average user token count
• 𝜏𝑖 : Average item token count
• 𝛼 : Communication time threshold ratio
• 𝑐: Candidate items per request
• 𝑁 : KV cache worker number

2: Output: Hotspot replication ratio 𝑟
3: procedure ComputeReplicationRatio
4: 𝑡 ← PrefillTime(𝜏𝑢, 𝑐 × 𝜏𝑖 ) ⊲ Offline prefill time

estimation
5: 𝑇max ← 𝛼 · 𝑡 ⊲ Max allowed communication time
6: 𝑆item ← 𝜏𝑖 ⊲ Average item size in tokens
7: 𝑅max ← 𝑇max×𝐵×(𝑁−1)

𝑐×𝑆item×𝑁 ⊲ Max allowed
communication ratio

8: Sort F in Descending order ⊲ Prepare for CDF scan
9: CDF← 0
10: for 𝑖 ← 1 to |F | do
11: CDF← CDF + F [𝑖]
12: if CDF ≥ 1 − 𝑅max then
13: 𝑟 ← 𝑖/|F | ⊲ Replication ratio
14: break
15: end if
16: end for
17: Place replicated items on all workers
18: Uniformly partition non-replicated items across

workers
19: return 𝑟

20: end procedure

encode their behaviors. For example, some users’ token num-
bers are up to 8K, while 100 candidate items have around 1K
tokens. For these users, selecting the User-as-prefix attention
saves more computation than the Item-as-prefix attention.
However, some inactive users have much fewer tokens, e.g.,
800. Selecting Item-as-prefix minimizes their computation.
Therefore, selecting either User-as-prefix or Item-as-prefix is
not a one-size-fits-all decision.
Cache-agnostic Prompt Scheduling. We observe that it’s
inefficient to decide the prefix for each request statically,
without considering the cache states. For example, a straight-
forward strategy is to minimize computation greedily. For
each request, it compares the number of user tokens and
item tokens and selects the one with more tokens as the
prefix. We observe that over 70% of requests are scheduled
by it to User-as-prefix on the books dataset (See Table 1).
The inefficiency arises from two aspects: 1) the cache of
users with low frequency meets many compulsory misses,
and 2) the cache of users with high access frequency could
be evicted by the ones with low frequency (although low
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frequency users’ cache can be rejected from admission by
advanced cache replacement design, the rejected requests’s
attention is determined and can not leverage item cache to
save computation on time).
Hotness-aware Prompt Scheduling.Wepropose a hotness-
aware prompt scheduling strategy that explicitly considers
cache states when selecting prefixes. In scenarios where the
GR computation is the primary bottleneck, reducing compu-
tational overhead can be regarded as improving throughput.
Under this objective, and given the constraint of limited
cache capacity, the strategy should prioritize maximizing
access frequency per unit of cache space, which suggests
allocating cache to the highest-frequency user tokens within
a specified time window.

To capture request frequency, we define a sliding-window
metric 𝑓𝑢 , which measures how often a user issues requests
within a recent time window (e.g., the past𝑊 seconds or
minutes). While the exact future frequency 𝑓𝑢 is inherently
unpredictable, our key insight is that a user’s consecutive
behaviors tend to exhibit similarity. For instance, if a user
intends to purchase a specific item, they are likely to repeat a
search within a few minutes of the initial query. In contrast,
casual browsing often produces a more stable interaction
pattern, such as consecutively viewing multiple pages over
a short interval. To empirically validate this observation, we
sample and analyze the online traces of thousands of users.
For each user, we compute an average similarity score of
consecutive sliding-window frequencies using the formula
1 − | 𝑓𝑢 (𝑡 )−𝑓𝑢 (𝑡−𝛿 ) |

𝑓𝑢 (𝑡 )+𝑓𝑢 (𝑡−𝛿 ) , where the window sizes𝑊 are set to 5
minutes or 60 minutes, and 𝛿 denotes the interval between
windows. A higher value of this formula, approaching 1,
indicates greater similarity between the two consecutive fre-
quency windows. Figure 4 shows that most users exhibit con-
sistent behaviors across consecutive time windows. Based
on this observation, we approximate a user’s current 𝑓𝑢 as a
reliable estimate of their near-future request frequency.

Based on the frequency estimation 𝑓𝑢 , we design a hotness-
aware greedy policy to decide the user or the item as the
prefix. Formally, for a request 𝑟 with user token length 𝜏𝑢 (𝑟 )
and item token length 𝜏𝑖 (𝑟 ), the prefix selection rule is:

prefix(𝑟 ) =

user, 𝜏𝑢 (𝑟 ) ≥ 𝜏𝑖 (𝑟 ) ∧ 𝑓𝑢 (𝑟 ) > min𝑝∈C𝑢 𝑓𝑝 ,

item, otherwise,

where C𝑢 denotes the set of cached user pages, and 𝑓𝑝 repre-
sents their estimated frequencies.

Intuitively, when the user tokens are fewer than the item
tokens, we directly adopt the Item-as-prefix strategy to reuse
item caches. When the user tokens are longer, the scheduler
queries the cache meta service for the lowest-frequency user
pages in C𝑢 . If the predicted frequency 𝑓𝑢 (𝑟 ) of the incom-
ing user exceeds that of these pages, the scheduler replaces
them with the new user cache (User-as-prefix); otherwise,
the request falls back to the Item-as-prefix strategy.
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Figure 4. The Consistency of User Access Frequency across
Many Time Windows from Our Tracing.

Table 1. Detailed Information of Datasets

Dataset Games Beauty Books Industry
User Num. 15K 22K 510K 10M
Item Num. 8K 12K 280K 1M

Ave. User Token Num. 1245 2043 1586 1500
Ave. Item Token Num. 11 18 15 10

Table 2. Model Architecture

Models Qwen2-1.5B Qwen2-7B Llama3-1B
KV Head Num. 2 4 8
Head Dim. 128 128 64
Layer Num. 28 28 16

KV Cache Size per Token 28672 Bytes 57344 Bytes 32768 Bytes

Whenever an existing user cache is accessed, the cache
meta service decays its sliding-window frequency estimate
and maintains the statistics asynchronously. Since consecu-
tive user requests usually arrive at the granularity of seconds,
such asynchronous updates incur negligible latency.

6 Evaluation
6.1 Experimental Setup
Testbeds. The main experiments are conducted on a 4-node
cluster from Zhejiang University. Each node has an Intel(R)
Xeon(R) Silver 4214 (2×24 threads) CPU @ 2.20GHz, 200 GB
memory, one 40GB-A100 GPU connected with PCIe 3.0x16,
and 100Gbps network. We deploy one inference worker and
one KV cache worker per node. Production Testbeds.We
also evaluate Bat’s scalability on a 16-node production clus-
ter (See section 6.6), where each node has one NVIDIA H20
GPU, an Intel Xeon Platinum 8469C CPU (2 sockets × 48
cores/socket × 2 threads/core), 500GB host memory, and
200Gbps network.
Datasets. We evaluate on three open source real-world rec-
ommendation datasets, Games, Beauty, and Books from Ama-
zon [24], and one synthetic dataset Industry generated from
our real e-commerce advertising workload. See Table 1. Pro-
duction Dataset. In industry, the full item corpus can reach
hundreds of millions. However, recommendation traffic is
typically partitioned into multiple scenarios (e.g., channel-
specific entrances such as clothing, toys, etc.), each served by
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dedicated models. In our production practice, the item set per
scenario is usually at the million scale. For a 1B-parameter
model (e.g., Qwen), this implies a total item KV Cache foot-
print ranging from ∼ 287GB (1M items) to ∼ 2.87 TB (10M
items), where average token per item is 10. To examine Bat’s
scalability with large item corpus (See section 6.6), we vary
the number of items of the synthetic Industry dataset, de-
noted as Industry-X, where X is the item number. Unless
explicitly specified, the evaluation is done on normal
testbed and datasets.
Models.We evaluate three language models as GRs: Qwen2-
1.5B, Qwen2-7B [60], and Llama3-1B [20]. Table 2 details
the models. We use FP16 as the data type for KV cache. We
mainly focus on the GR ranking task. We apply a linear
recurrence-based model as our retrieval model [83].
Baselines.We select three prefix-caching-based designs as
well as a recomputation-based design as our baselines. For
all baselines, we implement the model inference based on
vLLM [36] and Flashinfer [79] and leverage CPU memory as
an LRU cache to store the KV cache.
• Recomputation (RE). RE performs GR serving without
prefix caching.
• User-as-prefix (UP). UP performs the User-as-prefix at-
tention for all requests. This is the widely adopted ap-
proach in existing GR works [11, 27, 29, 84].
• Item-as-prefix (IP). IP performs the Item-as-prefix atten-
tion for all requests.

6.2 Overall System Performance
We compare the overall throughput and cache hit rate of Bat
with three baselines and four datasets. We randomly sam-
ple the users with replacement from the history log of each
dataset. For each user, we take their history access frequency
as the basis for ad-hoc frequency and randomly sample the
intervals between consecutive accesses to simulate realistic
request patterns. For each request, we retrieve 100 candidate
items to make an input prompt. Since the original user histo-
ries in the Games, Beauty, and Books datasets are relatively
short, we expand their profile token lengths so that the max-
imum prompt length approaches 8K tokens. We define the
cache hit rate as the ratio of reused prefix tokens to the total
number of tokens per prompt. We allocate a fixed size of
host memory to store to the KV Cache. The cached token
number is determined by both allocated host memory size
and each model’s hyper-parameter.

Figure 5 and Figure 6 present the overall throughput and
cache hit rate, respectively. Compared to RE, Bat achieves up
to 58% cache hit rate and improves throughput by as much
as 2.3×, the highest among all baselines. Relative to UP, Bat
delivers up to 1.6× speedup.

When comparing UP and IP, we observe that on the Beauty,
Books, and Industry datasets, IP achieves a higher cache hit
rate and throughput than UP. This is because IP benefits from
better memory utilization and fewer compulsory misses. In
contrast, on theGames dataset, where the average user access
frequency is high, UP outperforms IP.

On the Industry dataset, Bat achieves throughput compa-
rable to IP, since the item cache sizes are already large under
the given memory constraints, leaving limited space for user
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Table 3. Performance Comparison of UP and IP Policies across Datasets and Models. Higher values indicate better performance.

Dataset Model Strategy Recall@10 MRR@10 NDCG@10 Recall@5 MRR@5 NDCG@5

Beauty

Qwen2-1.5B UP 0.6558 0.2912 0.3756 0.4433 0.2627 0.3068
IP 0.6827 0.2998 0.3881 0.4505 0.2687 0.3129

Qwen2-7B UP 0.6509 0.2574 0.3491 0.4262 0.2284 0.2774
IP 0.6766 0.2571 0.3555 0.4546 0.2279 0.2841

Llama3-1B UP 0.6365 0.2651 0.3506 0.3824 0.2317 0.2689
IP 0.6339 0.2428 0.3331 0.3816 0.2101 0.2525

Games

Qwen2-1.5B UP 0.6149 0.2458 0.3310 0.3794 0.2144 0.2549
IP 0.6412 0.2531 0.3424 0.3908 0.2200 0.2618

Qwen2-7B UP 0.6442 0.2574 0.3465 0.4021 0.2256 0.2688
IP 0.6392 0.2228 0.3201 0.4017 0.1912 0.2434

Llama3-1B UP 0.5813 0.2263 0.3075 0.3326 0.1941 0.2281
IP 0.5846 0.2234 0.3064 0.3422 0.1921 0.2289

Books

Qwen2-1.5B UP 0.5756 0.1727 0.2646 0.2802 0.1344 0.1702
IP 0.5515 0.1607 0.2496 0.2572 0.1228 0.1558

Qwen2-7B UP 0.6718 0.1858 0.2998 0.4418 0.1553 0.2257
IP 0.6535 0.1830 0.2931 0.4199 0.1524 0.2182

Llama3-1B UP 0.6472 0.3029 0.3818 0.4085 0.2717 0.3053
IP 0.6541 0.3009 0.3822 0.4202 0.2704 0.3072

cache. With additional machines or larger memory capac-
ity, Bat could allocate more space to user cache, thereby
achieving higher throughput.
6.3 Accuracy of Bipartite Attention
In this experiment, we evaluate the effectiveness of Bipar-
tite Attention on the ranking scenario, using three widely
adopted ranking metrics: recall (Recall@𝑘), mean recipro-
cal rank (MRR@𝑘), and normalized discounted cumulative
gain (NDCG@𝑘) with 𝑘 ∈ [5, 10]. Following the setup of
previous work [82], our testing dataset includes only those
requests where the ground truth item appears in the top-K
list, e.g., top-100, ranked by the retrieval model [83], treating
these as post-retrieval candidate items. Table 3 reports the
performance comparison of UP and IP attentions.

Table 3 shows that IP maintains similar performance as UP
in most cases, indicating that selecting both strategies has an
ignorable impact on the recommendation quality. In some
cases, IP even achieves higher performance than UP, e.g.,
Qwen2-1.5B on Beauty. However, in some cases, e.g., Qwen2-
1.5B on Books, IP experiences a slight quality degradation
compared to UP due to the modification of position encoding.
We can apply existing position-independent [26, 77] caching
(PIC) algorithm to further improve IP’s performance. For
example, we implement PIC like CacheBlend [77] to improve
the Qwen2-1.5B IP’s Recall@10, MRR@10, and NDCG@10
to 0.5634, 0.1676, and 0.2576 on Books dataset, narrowing
the gap between IP and UP. We leave more effective PIC
algorithm as future exploration.

We have also evaluated UP and IP attention mechanisms
with our production workloads and found that both can
achieve comparable performance (e.g., in terms of Recall and
Page View).
6.4 Impact of Cache Placement and Prompt

Scheduling
In this set of experiments, we examine the impact of cache
placement and prompt scheduling strategies. We evaluate
on the Books dataset and Qwen2-1.5B model.
Effectiveness of HRCS Item Cache Placement. We first
examine the effectiveness of cache placement. We evaluate
the throughput and cache hit rate of Bat under two network
bandwidth settings: 10Gbps and 100Gbps. The KV cache
transfer is enabled by GPUDirect RDMA. For comparison,
we implement two baselines: Bat-Replicate and Bat-Hash.
In Bat-Replicate, the item cache is fully replicated across
all machines, with the remaining memory allocated to user
cache. In Bat-Hash, 1/4 of the item cache is stored on each
machine, and item updates are distributed in a round-robin
manner across four machines. We allocate 150GB host mem-
ory per machine for KV cache.

Figure 7 presents the throughput and cache hit rate results.
Compared to Bat-Replicate, Bat improves throughput by
10% and 16% under 10Gbps and 100Gbps networks, respec-
tively, due to the availability of larger cache space for user
KV caching. Bat-Hash achieves a higher cache hit rate but
suffers from significant network communication overhead
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Figure 8. Impact of Hotness-aware Prompt Scheduling

(around 31% of inference latency), which reduces its through-
put to only 78% of Bat-Replicate under the 10Gbps setting.
In contrast, Bat selectively replicates only the hottest items,
thereby reducing network overhead while maintaining high
cache hit rate.
Effectiveness of Hotness-aware Prompt Scheduling.We
compare Bat’s hotness-aware prompt scheduling with a
cache-agnostic baseline. The baseline determines the prefix
by comparing the number of user tokens with item tokens
and always choosing the larger side as the prefix.We evaluate
both throughput and cache hit rate. For fairness, the item
cache size is fixed across both systems, while the user cache
size is varied from 25GB to 100GB.
As shown in Figure 8, when the user cache is small, the

cache-agnostic baseline exhibits significantly lower through-
put and cache hit rate than Bat. This is because it naively
selects users with long profiles as User-as-prefix, resulting in
frequent compulsory and capacity misses. In contrast, Bat
strategically selects only high-frequency users for User-as-
prefix and schedules the others to Item-as-prefix, thereby
minimizing cache misses and sustaining higher throughput.
How these components contribute to overall through-
put? Table 4 shows the ablation study following the end-to-
end configuration in section 6.2. For simplicity, ABC denotes
enabling all three proposed techniques: (A) Bipartite Atten-
tion, without A uses User-as-prefix attention only; (B) HRCS
cache placement, without B replicates the item cache across
workers (at the 1M scale, where replication causes OOM
and we adopt hash sharding instead); and (C) hotness-aware
scheduling, without C uses cache-agnostic scheduling. Since
B and C are sensitive to the scale of the item cache, we vary
the item number (X) of the Books dataset(Books-X) to eval-
uate their effectiveness at different scales. For Books-280K,
the throughput of AB is comparable to that of ABC, as the
user cache space is large enough to minimize user cache
capacity misses. For Books-1M, AC achieves a comparable
throughput to ABC due to near user cache space and low net-
work communication overheads under 100Gbps network. In
summary, with A, Bat outperforms traditional UP attention;
B is suitable for scenarios with slow networks and large item
sizes; and C is beneficial when user cache space is limited.
6.5 Latency
This experiment evaluates the P99 end-to-end serving la-
tency of Bat at varying request rates. Figure 9 illustrates

Table 4. Ablation Study (Throughput in QPS). ABC denotes
enabling three proposed techniques.

Dataset ABC AB AC A None

Books-280K 128 128 115 102 83
Books-1M 126 106 125 105 83

the latency-throughput curves of Bat and the baseline sys-
tems, measured with the Qwen2-1.5B model on the Industrial
dataset. The curves indicate that latency grows gradually
with the request rate until the system reaches a saturation
point. Beyond this point, latency increases exponentially as
incoming requests exceed the system’s maximum serving
capacity [36]. Given a 200ms P99 latency SLO, Bat sustains
approximately 1.47× and 1.57× higher request rates com-
pared to UP and RE, respectively. These results indicate that
Bat can handle significantly more recommendation traffic
while reliably meeting the SLO.
6.6 Scalability
In this subsection, we examine Bat to scale along both the
dataset scale (item corpus size) and the node number (serving
capacity) on the production testbeds and the Industrial-X
datasets (See section 6.1), with the same data generation
process in 6.2.
ScalabilitywithDataset Size. First, we evaluate the serving
throughput and cache hit rate of Bat across 16 nodes from
the production testbeds, scaling the corpus size from 1M to
100M items. The evaluated model is Qwen2-1.5B. As shown
in Figure 10, Bat consistently outperforms the baselines as
the item number increases. The results on the Industrial-
100M demonstrate that Bat remains effective when process-
ing the full item corpus from multiple scenarios. Under this
configuration, Bat caches approximately 10% of the hottest
items and recomputes the remaining items for Item-as-prefix
attention, while scheduling more requests to User-as-prefix
attention. In contrast, the IP baseline suffers a more severe
drop in cache hit rate due to higher item cache miss.
Scalability of Serving Capacity.We evaluate the serving
throughput of Bat when varying node number from 1 to
16, as shown in Figure 11. We evaluate on Industrial-1M
dataset and Qwen2-1.5B model. The throughput of Bat in-
creases near-linearly from 1 to 16 nodes. This is because
request traffic is sharded across many service instances in
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a data-parallel manner, and adding nodes increases serv-
ing capacity approximately linearly. Moreover, the HRCS
cache placement strategy effectively minimizes the network
overhead for communicating item KV Cache.

7 Related Work
Generative Ranking.Many works [5, 9–11, 18, 25, 27, 29,
39, 40, 63, 67, 70–73, 82, 84, 88] take generative models to
perform ranking tasks. Among them, systems [11, 27, 29,
71, 84] like Onerec [11], HSTU [84], GenRank [27] have
been deployed in real large-scale industrial recommendation
systems, e.g., Meta, KuaiShou, achieving remarkable online
improvement over traditional recommendation paradigms.
They take user profiles and candidate items as the input of
the generative models, model the user-item interaction with
self-attention, and score the user preference. Our GR is also
based on this paradigm. Other approaches [5, 34, 72, 73] have
also been explored, which use generative models as encoders
to learn user and item embeddings separately and apply
interaction models, e.g., DLRMs [73], on learned embeddings.
Generative Retrieval. Many works [50, 71, 80] utilize gen-
erative models in the retrieval stages of the recommendation
pipeline. The objective and key user-item interaction para-
digm are similar to the ranking stage, but the candidate item
number is orders larger, e.g., 10K candidates. We believe our
Bipartite Attention will save more computation for larger
candidate item sets and leave this as our future work.
LLM Inference and Prefix Caching. Recent advancements
in LLM serving systems [6, 16, 17, 19, 30, 32, 44, 49, 62, 76,
77, 81, 87, 89] have proposed the prefix caching technique
to accelerate LLM inference. These systems mainly focus
on general LLM applications like chatbots. They take input
prompts as the user-deterministic queries and passively man-
age the KV cache. In contrast, Bat is the first system that
proactively changes input prompt orders and manages KV
cache, tailored for recommendation scenarios.
DLRMs.Deep learning recommendationmodels (DLRMs) [7,
8, 59, 64, 68, 92] combine large-scale embedding tables for
sparse categorical features with relatively small dense layers
for numerical features and final prediction [47]. These mod-
els are currently the cores of industry-scale recommender

systems [2, 14, 21, 31, 37, 41, 42, 45–48, 52–54, 56–58, 65,
69, 74, 75, 75, 78, 86] to accelerate training and inference.
In contrast, Bat focuses on generative recommendation, a
new paradigm with new system-side challenges. Unlike DL-
RMs, where embedding lookups are the primary bottleneck,
generative recommenders shift the performance bottleneck
toward compute-intensive transformer blocks [12, 84].

8 Conclusion
In this paper, we present Bat, an efficient GR serving system,
based on the key observation that the semantics between
user and item tokens are permutation-invariant. We propose
Bipartite Attention attention to adaptively select either the
user or the item as the prompt prefix without losing accu-
racy to enhance KV cache reuse. We further co-design a
disaggregated KV cache pool to proactively manage user-
and item-prefix caches separately. To reduce memory over-
head, we develop a hot-replicated cold-sharded item cache
placement strategy to minimize memory usage by exploit-
ing the skewed access distribution and the availability of
fast local networks. Finally, we introduce a hotness-aware
prompt scheduling strategy to optimize prefix selection un-
der memory constraints. Extensive experiments on multiple
recommendation datasets show that Bat improves serving
throughput and reduces overall computation.
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